

Guide Équipements chaudronnés & machines tournantes destinés aux procédés industriels

Mise en application de la section II
[Dispositions relatives aux règles parasismiques applicables à certaines installations]
de l'arrêté du 4 octobre 2010 modifié

DT 114 Octobre 2015

		SOMMAIRE	Page
GÉI	NÉRALITÉS		5
1.1	Obiet et doma	ine d'application du guide	5
1.2	Données relati	ives à la réalisation des évaluations et/ou des calculs ats chaudronnés	8
	1.2.1 Equipe	ements chaudronnés neufs	8
	1.2.2 Equipe	ements chaudronnés en service	8
1.3	Hypothèses de	calcul et conditions particulières	10
	1.3.1 Condit	tions générales	10
	1.3.2 Interac	ction sol-structure	10
	1.3.3 Interac	ction structure support-équipement	11
	1.3.4 Spectro	es sismiques	11
	1.3.5 Amort	issement	11
	1.3.6 Coeffic	cient de comportement – Coefficient de réduction	12
	1.3.7 Calcul	à l'aide de modèles éléments finis	13
	EMINÉES / TOI ERVOIRS VER	RCHÈRES, COLONNES ET RÉACTEURS VERTICAUX, RTICAUX	
2.1	Introduction		15
2.2	Estimation de l	a réponse sismique à partir de calculs analytiques (Procédure 1)	19
2.3	Détermination	de la réponse sismique à l'aide de modèles numériques (Procédure 2)	20
2.4	Exemples		24
		ERVOIRS HORIZONTAUX, RÉACTEURS HORIZONTAUX ET BULAIRES HORIZONTAUX	27
3.1	Introduction		27
3.2	Estimation de l	a réponse sismique à partir de calculs analytiques (Procédure 1)	32
3.3	Détermination	de la réponse sismique à l'aide de modèles numériques (Procédure 2)	34
RÉS	ERVOIRS SPH	ÉRIQUES	35
4.1	Introduction		35
4.2	Estimation de l	a réponse sismique à partir de calculs analytiques (Procédure 1	37
4.3	Détermination	de la réponse sismique à l'aide de modèles numériques (Procédure 2)	42
	TRES ÉQUIPEN AUDIÈRES	MENTS : FOURS, AÉROREFRIGÉRANTS, "BOITES FROIDES",	43
	CHINES TOUR AGITATEURS	NANTES : POMPES, COMPRESSEURS, GROUPES ELECTROGÈNES,	51
OR	GANES DE SÉC	CURITÉ (Soupapes)	57
RÉI	ÉRENCES		59

	SOMMAIRE (Suite)	Page
ANNEXES		
ANNEXE 1	GÉNÉRALITÉS	67
	1° Partie : Détermination simplifiée de spectres de plancher	67
ANNEXE 2	COLONNE SUR JUPE	71
	1° Partie : Détermination des fréquences propres horizontales et verticale (Procédure 1)	72
	2° Partie : Exemple (Procédure1)	77
ANNEXE 3	RÉSERVOIRS HORIZONTAUX SUR DEUX BERCEAUX	105
	1° Partie : Estimation de la réponse sismique à partir de calculs analytiques (Procédure 1)	105
	2° Partie : Exemple (Procédure 1)	133
ANNEXE 4	RÉSERVOIRS SPHÉRIQUES	141
	1° Partie : Détermination des fréquences propres et estimation de la réponse sismique à partir de calculs analytiques (Procédure 1)	141
	2° Partie : Exemple (Procédure1)	157
ANNEXE 5	Non utilisée	
ANNEXE 6	MACHINES TOURNANTES	173
	1° Partie : Équipement sur support muni d'isolateurs	173

DT 114 - Guide Équipements chaudronnés & machines tournantes destinés aux procédés industriels

1 - GENERALITES

1.1 - Objet et domaine d'application du guide

Le but du présent guide est de définir, pour les équipements chaudronnés et machines tournantes neufs ou en service, des procédures et/ou méthodologies de vérification au séisme répondant aux exigences de la réglementation applicable sur le territoire français [1], [2], [3], [4], [6].

Les équipements objets des recommandations de la présente version du guide sont les équipements métalliques (Notes 1 & 2) à poste fixe définis ci-après et répondant aux critères définis par l'arrêté du 24 Janvier 2011 [6].

Chapitre 2 : Cheminées / Torchères, Colonnes et réacteurs verticaux, Réservoirs verticaux

Chapitre 3 : Ballons et réservoirs horizontaux, Réacteurs horizontaux et échangeurs tubulaires horizontaux

Chapitre 4 : Réservoirs sphériques

Chapitre 5 : Autres équipements : Fours, Aéroréfrigérants, "Boîtes froides", Chaudières

Chapitre 6 : Machines tournantes

Chapitre 7 : Organes de sécurité (Soupapes...)

Chapitre X : Références

Note 1 : Les équipements concernés peuvent être des équipements soumis à la pression ou non, la pression, le cas échéant, pouvant être positive ou négative (équipements fonctionnant au vide).

Note 2 : Les méthodologies proposées dans le présent guide sont destinées aux équipements métalliques essentiellement en acier ayant un comportement suffisamment ductile. L'extension de ces méthodologies à des équipements en matériaux composites, plastique, ... envisageable dans de nombreux cas, notamment pour des matériaux homogènes, reste toutefois de la responsabilité de l'intervenant.

Les données sismiques utilisées pour la vérification au séisme de ces équipements doivent être conformes aux exigences règlementaires applicables. A cet égard, l'exploitation et les interprétations éventuelles des textes réglementaires font l'objet du *Guide Méthodologie générale* [9a] auquel il convient de se reporter pour l'application du présent guide.

Dans le cadre du présent guide, la vérification au séisme des équipements considérés a pour but d'assurer le respect de l'une des conditions suivantes [9a §5] :

• E1 : Maintien en place de l'équipement (stabilité).

Note 1 : Cette exigence concerne notamment les équipements pour lesquels aucune condition particulière n'est requise mais dont les déplacements et/ou l'endommagement peuvent entraîner des désordres sur des équipements voisins pour lesquels l'un des critères définis ci-après doit être respecté (EAP [9a]).

• E2 : Maintien en place de l'équipement considéré & confinement du produit manipulé à l'intérieur de l'équipement (intégrité),

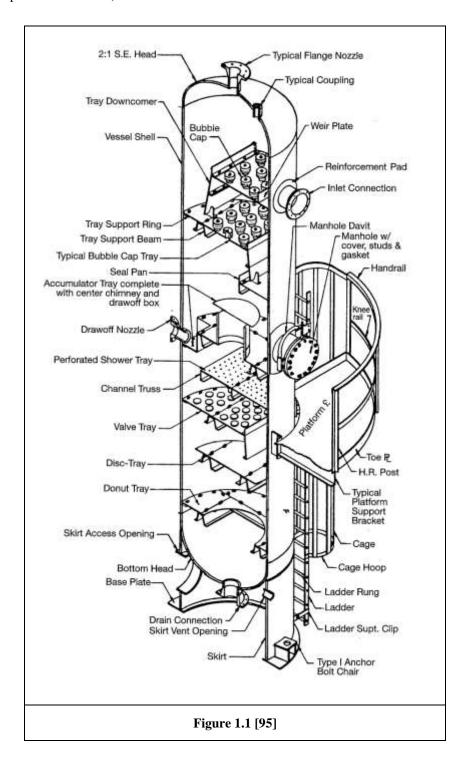
Note 1 : Les vérifications envisagées portent sur l'état limite ultime au sens de la référence [27 § 2.2.2]

Note 2 : Pour les assemblages non permanents (assemblages à brides boulonnés ou assemblages vissés uniquement), une fuite temporaire limitée peut être admise, sous réserve que celle-ci soit prise en compte dans les analyses de risques. Pour les assemblages à brides boulonnées si une étude s'avère nécessaire (par exemple fuite d'un produit très toxique via une bride à proximité immédiate d'une clôture) la fuite peut être évaluée en se reportant à la référence [125f].

Note 3 : Cette condition nécessite que les organes de sécurité installés sur l'équipement restent fonctionnels

• E3a : Maintien en place de l'équipement, confinement du produit manipulé à l'intérieur de l'équipement & maintien des capacités fonctionnelles de l'équipement considéré.

Note 1 : Le maintien des capacités fonctionnelles correspond notamment à l'absence d'obstruction des entrées/sorties par exemple en s'assurant du maintien en place des internes de l'équipement.


• E3b: Maintien en place de l'équipement, confinement du produit manipulé à l'intérieur de l'équipement & maintien des capacités fonctionnelles de l'équipement considéré & maintien de l'opérabilité de tout ou partie des organes d'exploitation de l'équipement (vannes, robinets...).

Note 1 : L'extension de cette dernière condition afin d'assurer le maintien en exploitation de l'équipement après séisme correspondrait à l'état de limitation des dommages au sens de la référence [27 § 2.2.3]

Il convient de rappeler que, dans la plupart des cas, le niveau E2 devrait permettre de répondre aux exigences réglementaires. Les niveaux E3, sensiblement plus contraignant, ne devraient être applicables que dans quelques cas exceptionnels ou, éventuellement, dans les cas où l'Exploitant souhaite préserver l'ensemble des capacités de production de ses unités.

Sauf pour la condition E3b le cas échéant, une analyse détaillée du comportement des internes des équipements n'est pas nécessaire sous réserve de vérifier que ceux-ci sont bien solidaires du corps des équipements (Figure 1.1).

La décision quant aux conditions à respecter est de la responsabilité du Donneur d'ordre (Equipements neufs) ou de l'Exploitant (Equipements en service).

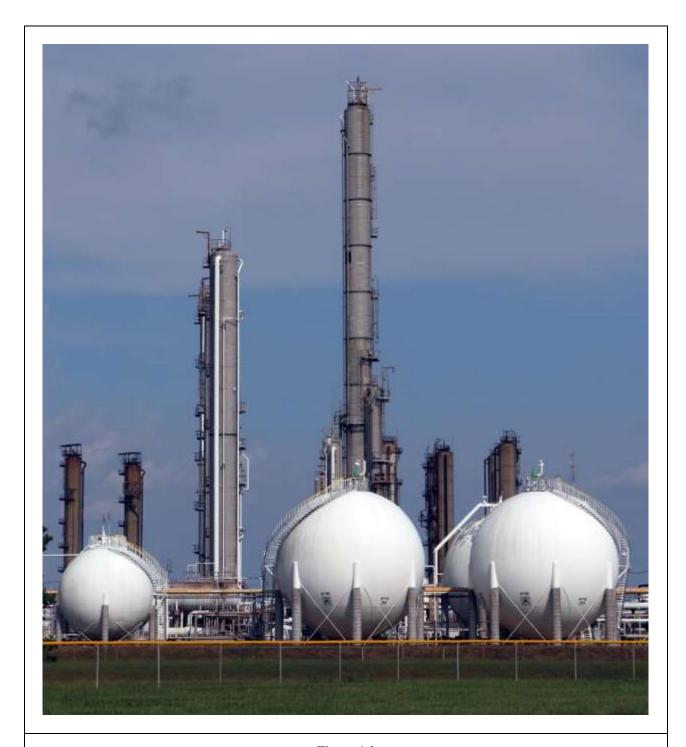


Figure 1.2

1.2 - Données relatives à la réalisation des évaluations et/ou des calculs des équipements chaudronnés

1.2.1 - Équipements chaudronnés neufs

Pour chacun des éléments intervenant dans l'évaluation et/ou les calculs : Matériaux, dimensions et épaisseurs y compris les éventuelles surépaisseurs de corrosion,

1.2.2 - Équipements chaudronnés en service

Pour chacun des éléments intervenant dans l'évaluation et/ou les calculs : Matériaux, dimensions et épaisseurs. Les épaisseurs à prendre en compte sont définies de la manière suivante :

- L'épaisseur nominale de commande (c.à.d. « tel que construit »), perte d'épaisseur due à la corrosion éventuelle déduite (voir Note).
 - Note 1 : Perte d'épaisseur estimée pour la période comprise entre la date de construction et la date du prochain relevé d'épaisseur prévu par le plan d'inspection. En fonction des matériaux utilisés, du produit stocké ainsi que des éventuelles dispositions constructives spécifiques (revêtement par exemple) cette perte d'épaisseur peut être nulle.
 - Note 2 : Cette épaisseur doit être supérieure ou égale à l'épaisseur minimale nécessaire requise par le référentiel (Code ou Norme) utilisé pour la construction ou le suivi en service et la maintenance de l'équipement considéré.

ou,

- L'épaisseur mesurée lors de la dernière inspection, perte d'épaisseur due à la corrosion éventuelle déduite (voir Note).
 - Note 1 : Perte d'épaisseur estimée pour la période comprise entre la date à laquelle les mesures d'épaisseur ont été effectuées et la date du prochain relevé d'épaisseur prévu par le plan d'inspection. En fonction des matériaux utilisés, du produit stocké ainsi que des éventuelles dispositions constructives spécifiques (revêtement par exemple) cette perte d'épaisseur peut être nulle.
 - Note 2 : Cette épaisseur doit être supérieure ou égale à l'épaisseur minimale nécessaire requise par le référentiel (Code ou Norme) utilisé pour la construction ou le suivi en service et la maintenance de l'équipement considéré.

ou,

- L'épaisseur minimale nécessaire requise par le référentiel (Code ou Norme) utilisé pour la construction ou le suivi en service et la maintenance de l'équipement considéré.
 - Note : L'épaisseur déterminée à partir d'éventuelles mesures lors des prochaines inspections et utilisée lors de l'application du référentiel retenu ne devra pas être inférieure à cette valeur.

Pour l'équipement considéré il convient de rassembler les rapports des opérations de surveillance, des inspections de routine ou des inspections réglementaires (voir notamment [163b] ainsi que [135] & [171]) définissant les examens et contrôles éventuels mis en œuvre pour le suivi en service de l'équipement. Les examens et contrôles qui ont pu être réalisés sont des contrôles non destructifs, des évaluations métallurgiques (mesures de dureté, répliques...), des essais mécaniques... Ces rapports doivent permettre de connaître les éventuelles opérations de réparation antérieures.

A ce titre, les dégradations ci-après, au minimum, doivent faire l'objet d'une attention particulière et peuvent nécessiter une visite sur site par du personnel expérimenté (voir [9a § 7.3.1]) :

- déformation excessive de l'équipement et/ou du supportage,
- défauts de forme et d'aspects des joints soudés,
- défauts de surface préjudiciables à la tenue mécanique de l'enveloppe sous pression,
- déformation de la paroi des appareils à pression raccordé à la tuyauterie,
- détérioration d'un revêtement de surface ou d'une peinture contre la corrosion

- boulons d'ancrage cisaillés ou manquants,
- fondation fissurée,
- défauts de forme : écart de circularité, ovalisation, désalignement des fibres neutres et/ou angulaire des assemblages soudés,
- fuites éventuellement dues à de la corrosion ou à des assemblages non permanents (assemblage à brides le plus souvent),

ainsi que les modes d'endommagements suivants :

- Endommagements par perte d'épaisseur (Corrosion atmosphérique, Corrosion sous calorifuge, Corrosion galvanique, Corrosion par piqûres, Corrosion caverneuse, Érosion, Cavitation, Oxydation).
- Endommagements métallurgiques (Fluage, Fatigue mécanique, thermique ou thermomécanique, Rupture brutale (fragile ou ductile), Modification métallurgique du matériau dont corrosion sélective, décarburation, décohésion des joints de grain…).

Figure 1.3

1.3 - Hypothèses de calcul et conditions particulières

1.3.1 - Conditions générales

Les présentes recommandations couvrent les équipements construits en matériaux ferreux et non ferreux sous réserve du respect des conditions ci-après :

- Les matériaux des différents éléments composant l'équipement chaudronné et son supportage doivent présenter une ductilité suffisante à la température d'exploitation (Note 1).
 - Note 1 : Pour les équipements neufs, il est recommandé de se reporter aux exigences de l'Annexe 1 au Décret N° 99-1046 du 13 Décembre 1999 relatif aux Equipements sous pression § 7.5. Caractéristiques des matériaux qui requière notamment un allongement à rupture supérieur ou égal à 14%. Cette valeur peut être ramenée à 10% pour les équipements en service. Dans les deux cas, pour la boulonnerie, cette valeur doit être égale ou supérieure à 12%.
- Lorsque la température de service est supérieure à la température de fluage [163a] il convient de s'assurer de la ductilité au fluage du matériau et, dans les calculs au séisme, d'utiliser les caractéristiques mécaniques instantanées.
- Les assemblages permanents couverts par les présentes recommandations sont uniquement les assemblages réalisés par soudage.

1.3.2 - Interaction sol-structure

Les recommandations générales concernant la prise en compte de l'interaction sol-structure sont données par les références [9a] et [9c] et les éléments pratiques par les références [47] et [79]. Notamment pour les structures élancées (Torchères, cheminées, colonnes ... Figures 1.1, 1.2 et 1.3), il est recommandé de prendre en compte les effets de l'interaction sol-structure dès que la vitesse des ondes de cisaillement dans le sol de la fondation est inférieure à 1000 m/s. À cet effet, des modèles numériques simples (modèle brochette) peuvent être utilisés (voir Figure 2.7) pour évaluer l'influence de l'interaction sol-structure.

$$\nu_s = \sqrt{\frac{G}{\rho_s}}$$
Vitesse des ondes de cisaillement dans le sol
$$G = \text{Module de cisaillement du sol}$$

$$\rho_s = \text{Masse volumique du sol}$$

Si les propriétés du sol ont une influence importante sur la réponse sismique de la structure, il convient de tenir compte des incertitudes de ces paramètres en considérant au moins les 3 cas suivants, définis par leur valeur de module de cisaillement dynamique G à partir de la valeur moyenne G_{mov} estimée ou mesurée :

• Valeur minimale : $G_{\min} = 2/3 G_{\max}$

• Valeur caractéristique : G_{mov}

• Valeur maximale : $G_{\text{max}} = 3/2 G_{\text{mov}}$

Note: En fonction des conditions de site d'un équipement spécifique, il peut être nécessaire d'étendre la plage de variation définie ci-dessus.

1.3.3 - Interaction structure support-équipement [9c],

On rappelle ci-dessous les critères de découplage dynamique présentés au § 3.3.2 de la référence [9c], référence à laquelle il convient de se reporter notamment lorsque ces critères ne sont pas respectés.

Les comportements de l'équipement et de la structure support peuvent être considérés comme découplés vis-à-vis des phénomènes dynamiques objets du présent guide, si un des critères suivants est vérifié :

- Rm < 0.01
- Rm < 0.1 et Rf > 1.25
- Rm < 0.1 et Rf < 0.80

où:

Rm: rapport entre la masse de l'équipement et la masse de la structure support

Rf: rapport entre la fréquence fondamentale de l'équipement et une des fréquences principales de la structure support.

Lorsque les comportements de l'équipement et de la structure support peuvent être considérés comme découplés, la masse de l'équipement doit être prise en compte dans la modélisation des masses de la structure support, comme une charge repartie ou une charge localisée, en tenant compte de sa localisation dans l'ouvrage. L'étude du comportement sismique de l'équipement doit alors être effectuée sur la base des mouvements sismiques transférés au droit des supports de l'équipement.

Lorsque les comportements de l'équipement et de la structure support ne peuvent pas être considérés comme découplés, un modèle global de la structure support et de l'équipement permettant la caractérisation des phénomènes de couplage dynamique doit être utilisé.

Dans les deux cas il convient de se reporter au Chapitre 5 de la référence [9c1] où les différentes procédures utilisables sont définies dont, notamment, la détermination simplifiée des spectres de plancher (Voir Annexe 1 du présent Guide).

1.3.4 - Spectres sismiques

Le séisme doit être appliqué dans deux directions horizontales orthogonales indépendamment, puis combinée en calculant la racine carrée de la somme des carrés des réponses dues à chaque composante horizontale et, éventuellement, de la composante verticale [28 Chapitre 5 § 5.3.2 & 5.4.2(4)]. Il est toutefois permis, d'étendre les règles des articles 3.2 et 4.2 de la référence [28a] aux structures axisymétriques et donc de ne prendre en compte qu'une seule direction horizontale.

Pour les structures élancées (torchères, cheminées, colonnes ...), lorsque leur hauteur est supérieure à 80 m et si le produit $a_{\rm g}S$ (Note 1) est supérieure à 0,25g, alors la nécessité de la prise en compte de la composante en rotation des mouvements du sol doit être évaluée (Note 2) [29 Chapitre 3 § 3.1 Note 1)] notamment pour les sols de classe D et au-delà.

- Note 1 : Avec $a_{\rm g}$ accélération de calcul au niveau d'un sol de classe A et S paramètre du sol tels que définis par la référence [27]
- Note 2 : Une méthodologie utilisable pour la définition et l'utilisation des spectres en rotation est proposée en Annexe A de la référence [29].
- Note 3 : Les valeurs de T_e spécifiées au Tableau A.1 de l'annexe A de la référence [27] doivent être remplacées par la valeur « 4s » de l'équation 3.5 du § 3.2.2.2 de la référence [27] (Spectre horizontal). Pour le spectre vertical aucune indication n'est fournie (ni par la réglementation ni par la référence [27]) pour déterminer l'accélération au-delà d'une valeur de la période supérieure à 4s.
- Note 4 : Pour tenir compte de la variabilité de la structure, les spectres de plancher correspondant à la valeur moyenne des caractéristiques de sol (Gmoy) pourront être élargis de +/-15% [9a].

1.3.5 - Amortissement

Pour les différentes situations envisageables et sauf justification particulière ou exigence spécifique, il convient d'utiliser, pour les équipements chaudronnés objet du présent guide, un coefficient d'amortissement égal à 5% pour les modes de structure et de 0,5% pour les modes de ballottement des liquides.

Note 1 : Voir aussi § 5.3.1.4 de [9a] pour d'autres types de structures métalliques

Note 2 : Pour les modes correspondant essentiellement au comportement du sol et des fondations de l'équipement, un amortissement supérieur à 5% peut être pris en compte mais dans ce cas le coefficient de comportement/de réduction doit être inférieur ou égal à 1,5.

1.3.6 - Coefficient de comportement – Coefficient de réduction [170], [9a], [27a]

La capacité des structures objet du présent guide à résister à des actions sismiques dans le domaine non linéaire permet en général d'effectuer leur dimensionnement à partir d'efforts plus faibles que ceux correspondant à un comportement linéaire élastique.

La capacité de dissipation d'énergie de la structure est due principalement au comportement ductile de ses éléments. Dans ces conditions et pour les calculs correspondant à la vérification à l'état limite ultime au sens de la référence [28], il est admis, pour les matériaux présentant une ductilité suffisante en conditions normales de service, d'utiliser un coefficient de comportement qui, sauf justification particulière, peut être pris égal à 1,5. [Note 1]. Ce coefficient de comportement peut alors être utilisé pour déterminer les spectres de calcul pour l'analyse élastique définis par la référence [27].

Note 1 : Dans le cas d'une vérification à l'état de limitation des dommages ce coefficient doit être égal à 1.

Si d'autres mécanismes interviennent, il est admis d'utiliser un coefficient de réduction englobant le coefficient de comportement précédemment défini et les effets complémentaires dus à ces mécanismes. Ce coefficient spécifique pour chaque type d'équipement est défini dans les différents chapitres du présent guide.et peut alors être utilisé pour définir les spectres de calcul (Note 2).

Note 2 : Il est rappelé que ces coefficients s'appliquent aux calculs des efforts mais n'affectent pas la détermination des déplacements

Il est rappelé toutefois que ces coefficients dépendent également de l'exigence imposée à la structure et donc du mode de défaillance étudié. A ce titre ces coefficients s'appliquent notamment pour la défaillance par déformation excessive (« contrainte de traction ») mais pas dans le cas d'instabilité élastique (flambement élastique Figure 1.4) sauf justification spécifique (Note 3).

Note 3 : Ductilité des ancrages par exemple. A cet égard, un allongement garanti des tiges d'ancrage de 12% pour les équipements neufs et de 10% pour des équipements en service sont des valeurs acceptables

Pour les phénomènes d'instabilité élastoplastique (Figure 1.4), en fonction des méthodologies appliquées c'est-àdire avec prise en compte du comportement élastoplastique du matériau [167], [163], [180] ou non, ces coefficients ne devront pas être utilisés pour ce mode de défaillance ou pourront être utilisés, totalement ou partiellement, pour ce mode de défaillance (Voir les tableaux relatifs aux différents type d'équipement).

Par ailleurs, il est rappelé que ces coefficients, notamment quand ils s'appuient sur la ductilité du matériau, ne s'appliquent qu'aux réalisations pour lesquelles les certificats de réception des matériaux exigent des contrôles spécifiques de ces derniers (Par exemple pour des équipements neufs : Certificat 3.1 conforme à la norme NF EN 10204 : Janvier 2005).

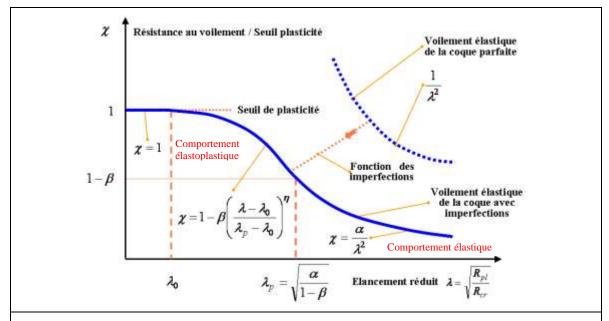


Figure 1.4: [180] & [163a] où les différentes variables sont définies & 2° Partie de l'Annexe 2 du présent Guide

1.3.7 - Calcul à l'aide de modèles éléments finis

Pour les différents équipements couverts par le présent guide, les modèles de calcul font l'objet de recommandations dans les différents chapitres ci-après. Ces modèles doivent être utilisés en respectant les recommandations ci-dessous.

1.3.7.1 - Loi de comportement, spectre de calcul et conditions aux limites

Au titre du présent guide deux possibilités sont envisagées :

- Calcul en élasticité linéaire sans prise en compte du contact avec le sol. Pour ce calcul, un spectre réduit (voir § 1.3.6 du présent guide) peut être pris en compte
- Calcul en élasto-plasticité avec prise en compte éventuelle du contact avec le sol. Pour ce calcul, le spectre règlementaire doit être utilisé.

Pour ce dernier cas, les calculs élasto-plastiques avec contact doivent tenir compte des hypothèses et exigences suivantes :

- Le sol est supposé indéformable pour toutes les zones sur lesquelles repose l'équipement, il n'est pas exclu de choisir une loi de comportement du sol en justifiant des paramètres utilisés.
- L'algorithme de calcul utilisé doit tenir compte des non linéarités géométriques (grandes transformations).
- La loi de comportement retenue doit être, sauf justification particulière, une loi de comportement élastoplastique par exemple telle que décrite ci-dessous :
 - Élastique linéaire en deçà de la limite conventionnelle d'élasticité à 0.2% pour les aciers carbone/carbone manganèse, et 1% pour les aciers inoxydables austénitiques.
 - De type courbe d'écrouissage au-delà de la limite conventionnelle d'élasticité ou à défaut parfaitement plastique.
 - Note 1 : Pour simplifier le calcul et en première approche, il est possible d'utiliser une loi de comportement élastique linéaire parfaitement plastique.
 - Note 2 : Ces recommandations doivent être adaptées pour le cas des aciers inoxydables austénitiques.
 - Note 3 : Le présent guide n'exclut pas la possibilité de réaliser des calculs plus détaillés (calculs non linéaires/avec interaction fluide structure...).

Les chargements correspondant aux conditions normales de service (Pression, température ...) font l'objet, préalablement d'une analyse statique.

Puis, une analyse dynamique modale devra être réalisée pour déterminer les caractéristiques dynamiques intrinsèques du modèle de calcul (Fréquences et modes propres). Pour cela, le modèle devra prendre en compte la masse de l'enveloppe de l'équipement, la masse du produit contenu ainsi que les masses des accessoires éventuels.

Enfin une analyse spectrale ou une analyse statique équivalente doit être réalisée à partir des résultats de l'analyse modale et des spectres représentatifs de la situation de l'étude.

Note 4 : Une analyse plus détaillée telle qu'une analyse temporelle peut être mise en œuvre.

1.3.7.2 - Analyse des résultats

1.3.7.2.1 - Dans le cas d'une étude avec un comportement élastique linéaire du matériau :

Les résultats obtenus doivent faire, au minimum, l'objet des évaluations précisées dans le présent guide. Notamment, pour les zones en compression des équipements (pieds, jupe, berceaux, ...), les contraintes, doivent faire l'objet des vérifications requises aux différents paragraphes du présent guide relatifs aux équipements (§ 2.2 et Figure 2.8, Figure A3/1-9, Figure A4/1-7). Le cas échéant, ces évaluations doivent être complétées par la vérification des critères requis par le référentiel retenu pour l'analyse sismique de l'équipement.

1.3.7.2.2 - Dans le cadre d'une étude prenant en compte un comportement élasto-plastique du matériau :

Les résultats obtenus doivent faire, au minimum, l'objet des évaluations ci-dessous :

- Pour les zones en compression des équipements (pieds, jupe, berceaux, ...), les contraintes, doivent faire l'objet des vérifications requises aux différents paragraphes du présent guide relatifs aux équipements (§ 2.2 et Figure 2.8, Figure A3/1-9, Figure A4/1-7).
- Pour les autres cas, les déformations plastiques doivent être limitées à 5% pour un acier carbone/carbone-manganèse, et 7.5% pour les aciers inoxydables austénitiques sauf justifications spécifiques.

Le cas échéant, ces évaluations doivent être complétées par la vérification des critères requis par le référentiel retenu pour l'analyse sismique de l'équipement.

1.3.8 - Combinaison des chargements et critères [9a §4.4]

En compléments aux efforts dus au séisme, les chargements à prendre en compte sont ceux correspondant aux situations de service normales : poids propre, pression(s) et température(s) de service et le cas échéant efforts sur les tubulures.

La combinaison des résultats et l'analyse de ceux-ci notamment des contraintes doivent être conformes aux exigences du référentiel (Code de construction ou Norme) retenu pour le dimensionnement de l'équipement et pour la vérification au séisme.

Figure 1.5

2 - CHEMINEES / TORCHERES, COLONNES ET REACTEURS VERTICAUX, RESERVOIRS VERTICAUX

2.1 - Introduction

Le présent chapitre propose différentes procédures d'évaluation du comportement sismiques applicables aux cheminées et aux torchères [155] ainsi qu'aux colonnes, réacteurs verticaux et réservoirs verticaux (Figures 1.2 à 1.5 et [101]).

Les cheminées et les torchères peuvent être de type autoportantes ou supportées latéralement par un treillis (Figure 2.1) ou encore disposées sur différents types de charpentes (Four voir Figure 1.4 et § 5).

Les exigences relatives au comportement de ces équipements décrites au §1.1 du présent guides sont précisées aux § 5.5 et 6.4 de la référence [29]. Pour ce qui est des coefficients de réduction des cheminées et des éventuelles ossatures il convient de se reporter aux §4.10 et 6.1 de la référence [29]. Pour les autres équipements les valeurs de la Figure 2.2 peuvent être utilisées

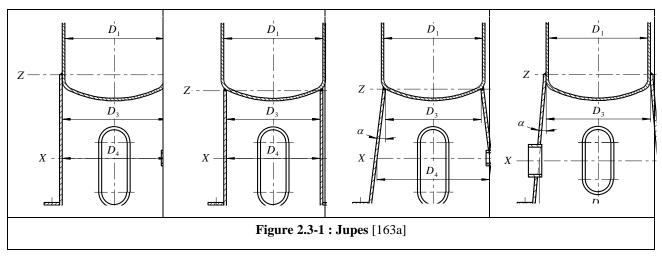
Pour les équipements haubanés il convient, pour la prise en compte des haubans, de se reporter aux recommandations de la référence [29a]

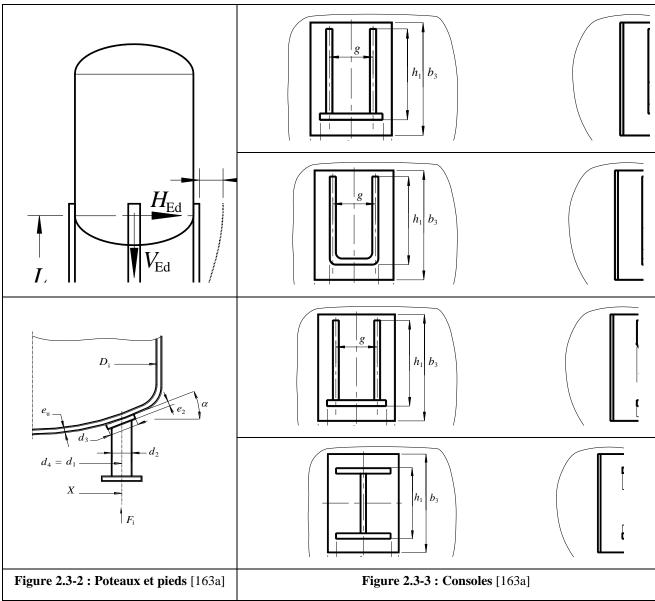
Ces équipements peuvent être supportés directement sur une jupe, des consoles, une couronne, des poteaux, des pieds, des poteaux ou une combinaison de ces différentes possibilités (voir Figure 2.3 ci-après).

Des exemples de comportement au séisme de ce type d'équipement sont donnés Figures 2.4 à 2.6.

Figure 2.1

Mode de défaillance		Lorsque la fréquence propre fondamentale est calculée (Note 1)			En l'absence de calcul de la fréquence propre fondamentale (Note 1)		
		E1	E2	E3	E1	E2	E3
Déformation	Н	3	2	1	3	2	1
excessive	V	1,5 Note 4	1,5 Note 4	1	1,5 Note 4	1,5 Note 4	1
Flambement élastique et	Н	1 à 1,5 Note 3	1 à 1,5 Note 3	1	1 à 1,5 Note 3	1 à 1,5 Note 3	1
Flambement élastoplastique	V	1 à 1,5 Note 3	1 à 1,5 Note 3	1	1 à 1,5 Note 3	1 à 1,5 Note 3	1


Note 1 : Ces coefficients doivent être utilisés pour établir un spectre réduit conformément à la procédure définie par la référence [27].


Note 2 : Coefficients de comportement globaux à appliquer aux efforts résultant d'un calcul linéaire

Note 3: 1,5 si et seulement si justifié par d'autres mécanismes que le comportement ductile du matériau de l'équipement (voir §1.3.6 Note 2)

Note 4 : Une valeur supérieure peut être utilisée sous réserve de justification appropriée

Figure 2.2 : Coefficient de comportement - Coefficient de réduction

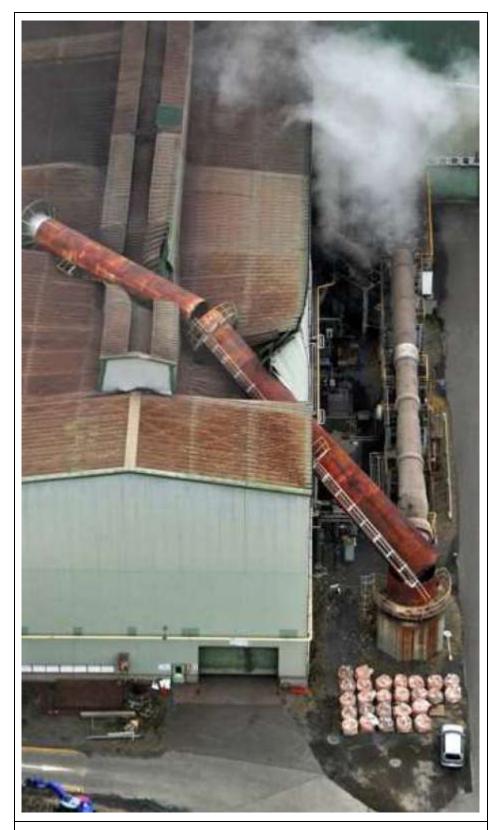


Figure 2.4 [64] Cheminée d'acierie -JF Steel Sendai Séisme de Tohoku, Magnitude 9 Japon 2011

Figure 2.5 - Tour de refroidissement de cimenterie - Seisme de Maule, Magnitude 8.8, Chili 2010 [111]

Figure 2.6 - Industrie papetière / Tour de blanchiment - Séisme de Maule, Magnitude 8,8 Chili 2010 [112]

2.2 - Estimation de la réponse sismique à partir de calculs analytiques (Procédure 1)

En dehors de quelques cas simples (Équipement de section droite constante sans charge localisée) qui peuvent être traités à partir de formules simples [96], le comportement des équipements couverts par le présent chapitre peut être évalué à partir des procédures analytiques spécifiées Figure 2.5 pour ce qui est de la détermination des fréquences fondamentales et de la détermination des efforts dus au séisme et Figure 2.6 pour ce qui est du calcul des contraintes et de l'évaluation finale de l'équipement [95], [172], [173].

Ces procédures ne permettent pas de prendre en compte l'éventuelle interaction sol-structure, situation pour laquelle il convient de se reporter à la méthodologie précisée au § 2.4.

Ces procédures sont illustrées au § 2.5 par le cas d'une colonne sur jupe (Figures 2.9 & 2.10 et 2° Partie de l'Annexe 2).

Équipement	Période(s) / Fréquence(s) (Voir note)	Efforts sismiques
sur jupe cylindrique	[95] Figure 4-6 (c) & Annexe 2 du présent guide	[95] Procédures 4-8
sur jupe conique	-	[95] Procédures 4-9
sur poteaux sans contreventement	[95] Figure 4-6 (d)	[95] Procédures 4-4
sur poteaux avec contreventement	[95] Figure 4-6 (h)	[95] Procédures 4-5
sur couronne	-	[95] Procédure 4-6
sur consoles	-	[95] Procédure 4-7

Note : Il est toujours possible d'éviter de déterminer la fréquence fondamentale de l'équipement, sous réserve de déterminer les efforts sismiques à partir des accélérations maximales définies par les spectres applicables.

Figure 2.7

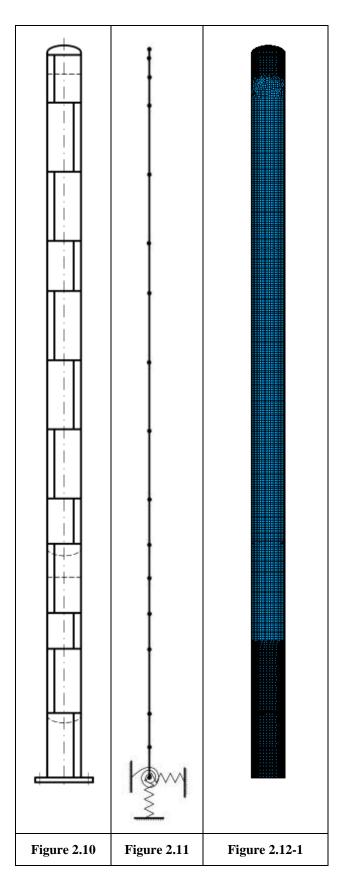
Équinament	Calcul des contraintes & évaluation de l'équipement					
Équipement	[163a] ou[169]					
	Chapitre C9.7 (Jupe)					
sur jupe	Annexe C9.A12 (Note)	Clause 16.12				
	Annexe C9.A7 (Ouverture)					
sur poteaux	Chapitre C9.9	Clause 16.11				
sur couronne	1	Clause 16.13				
sur consoles	Chapitre C9.4	Clause 16.10				

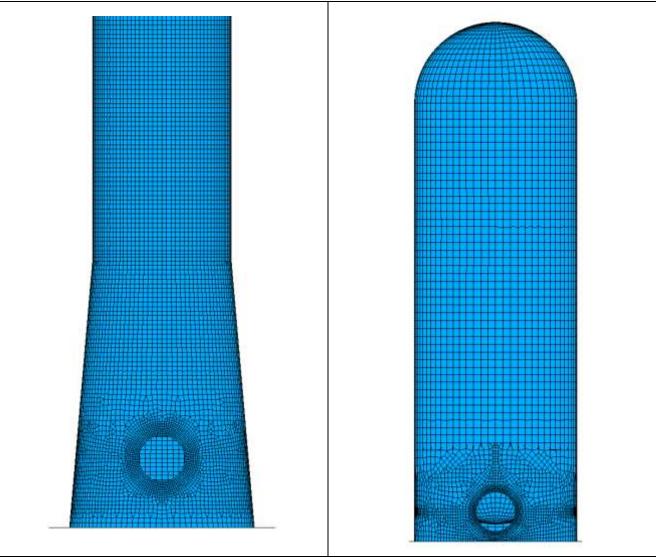
Note : Cette annexe permet de déterminer les contraintes de compression admissibles. À cet effet il est aussi acceptable de se reporter aux propositions de la référence [167] qui conduisent à des résultats pratiquement identiques.

Figure 2.8

2.3 - Détermination de la réponse sismique à l'aide de modèles numériques (Procédure 2)

Lorsque les calculs analytiques s'avèrent insuffisants pour représenter correctement le comportement de l'équipement ou lorsque les résultats obtenus paraissent excessivement conservatifs il est possible d'évaluer les efforts dus au séisme à partir d'un modèle « éléments finis poutre » [99] [150].


Ce type de modèle permet de prendre en compte l'interaction sol-structure éventuelle (Figure 2.11 & [79]) et éventuellement l'influence d'une tuyauterie raccordée à l'équipement (Figure 2.13).


La détermination des efforts sismiques peut être réalisée soit à partir d'un calcul quasi-statique soit à partir d'un calcul spectral utilisant les spectres de réponse sismiques (voir aussi § 1.3.7) ou encore de méthode type « push over » [172].

Enfin, notamment dans le cas d'efforts sur tubulures importants, il est toujours possible de réaliser une étude sismique à partir d'un modèle « éléments finis coque » ([172] et Figure2.12-1 à Figure2.12-3) les contraintes admissibles restant toutefois inchangées.

Cette procédure est illustrée au § 2.5 par le cas d'une colonne sur jupe (Figures 2.16 & 2.17).

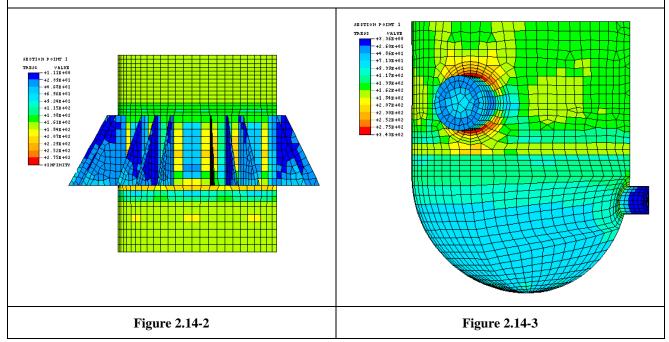
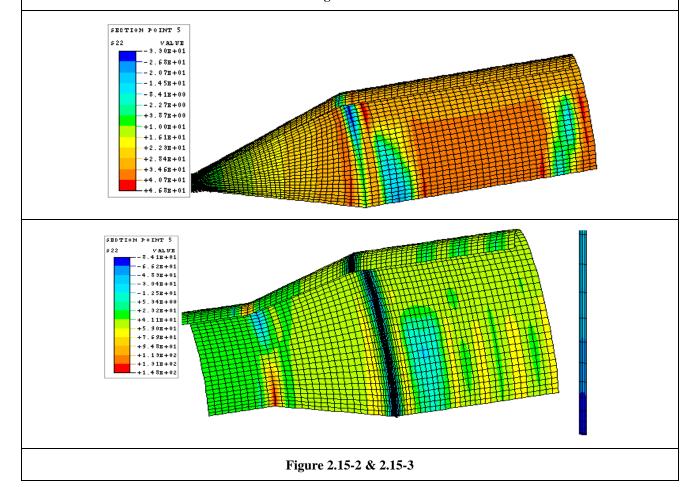
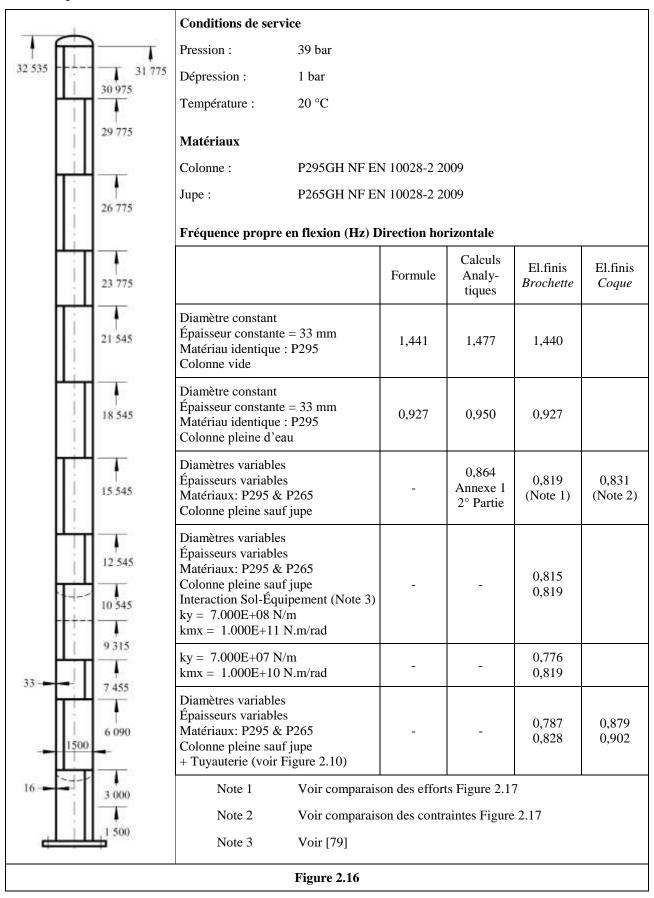
Notes relatives à la modélisation éléments finis :

Pour la jonction entre la platine d'ancrage et la jupe de la colonne, ainsi que pour la liaison entre la jupe et la colonne : maillage de type quadrangle régulier de taille approximativement égale à $1/20^{eme}$ du périmètre du réservoir pour la largeur et de dimension approximativement identique pour la hauteur

Puis pour les zones courantes : maillage de transition de taille approximativement entre $1/20^{\text{ème}}$ et $1/5^{\text{ème}}$ du périmètre de l'appareil pour la largeur et de dimension approximativement identique pour la hauteur

Figure 2.12-2	Figure 2.12-3
---------------	---------------

Figure 2.14-1

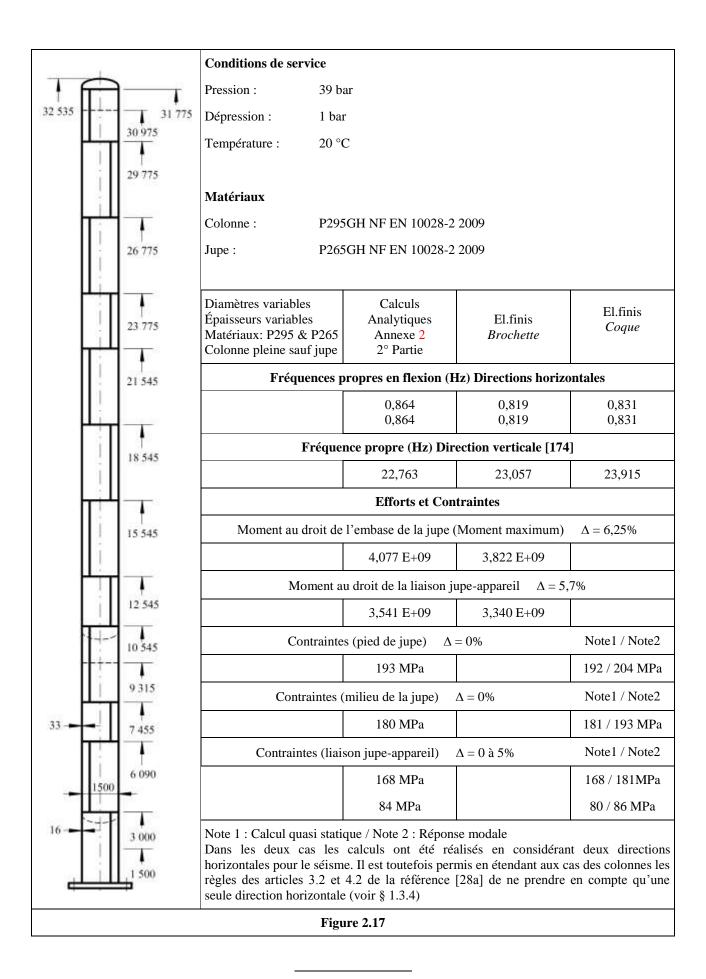


Figure 2.15-1

2.4 - Exemple

DT 114 - Guide Équipements chaudronnés & machines tournantes destinés aux procédés industriels

3 - BALLONS ET RESERVOIRS HORIZONTAUX, REACTEURS HORIZONTAUX ET ECHANGEURS TUBULAIRES HORIZONTAUX

3.1 - Introduction

Le présent chapitre propose deux procédures d'évaluation du comportement sismiques applicables aux ballons, réservoirs et réacteurs horizontaux (Figures 3.2 à 3.6) ainsi qu'aux échangeurs tubulaires horizontaux (Figures 3.8 à 3.13).

Pour les équipements sous talus (Figure 3.7), exclus du présent guide, il convient de se reporter aux documents spécifiques [161] [177].

Mode de défaillance		Lorsque la fréquence propre fondamentale est calculée (Note 1)			En l'absence de calcul de la fréquence propre fondamentale (Note 2)		
		E1	E2	E3	E1	E2	E3
Déformation	Н	3	2	1	3	2	1
excessive	V	1,5 Note 4	1,5 Note 4	1	1,5 Note 4	1,5 Note 4	1
Flambement élastique et	Н	1 à 1,5 Note 3	1 à 1,5 Note 3	1	1 à 1,5 Note 3	1 à 1,5 Note 3	1
flambement élastoplastique	V	1 à 1,5 Note 3	1 à 1,5 Note 3	1	1 à 1,5 Note 3	1 à 1,5 Note 3	1

Note 1 : Ces coefficients doivent être utilisés pour établir un spectre réduit conformément à la procédure définie par la référence [27].

Note 2 : Coefficients de comportement globaux à appliquer aux efforts résultant d'un calcul linéaire

Note 3: 1,5 si et seulement si justifié par d'autres mécanismes que le comportement ductile du matériau (voir §1.3.6 Note 2)

Note 4 : Une valeur supérieure peut être utilisée sous réserve de justification appropriée

Figure 3.1 : Coefficient de comportement – Coefficient de réduction



Figure 3.4 [97]

Figure 3.5

Figure 3.6

Figure 3.7

Figure 3.8 Figure 3.9

Figure 3.10 Figure 3.11

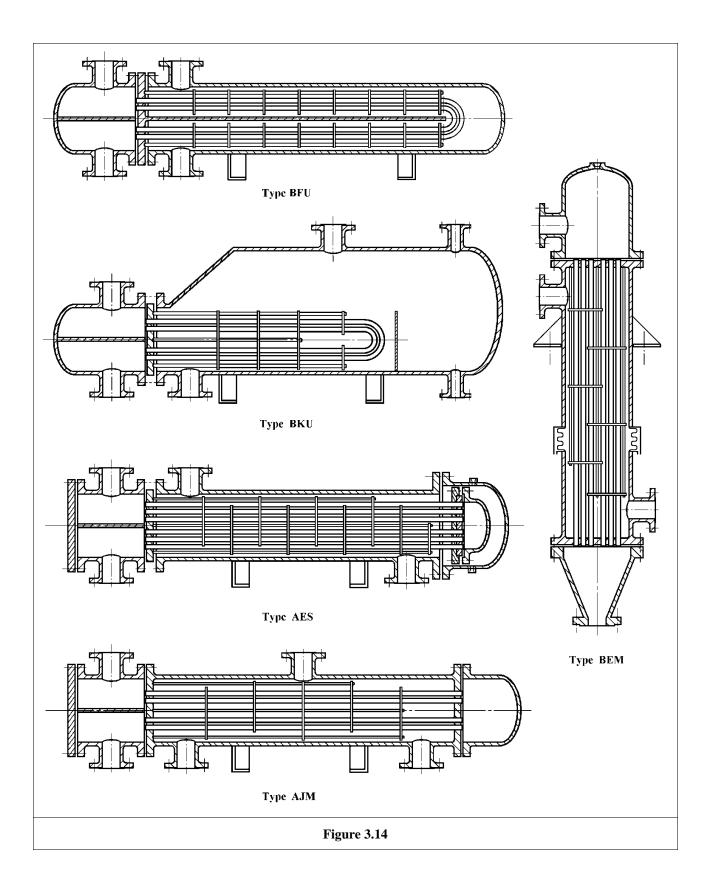


Figure 3.15 - Échangeur Séisme de Marmara, Magnitude 7.4 Izmit Turquie 1999 [105] Endommagement du support « fixe »

3.2 - Estimation de la réponse sismique à partir de calculs analytiques

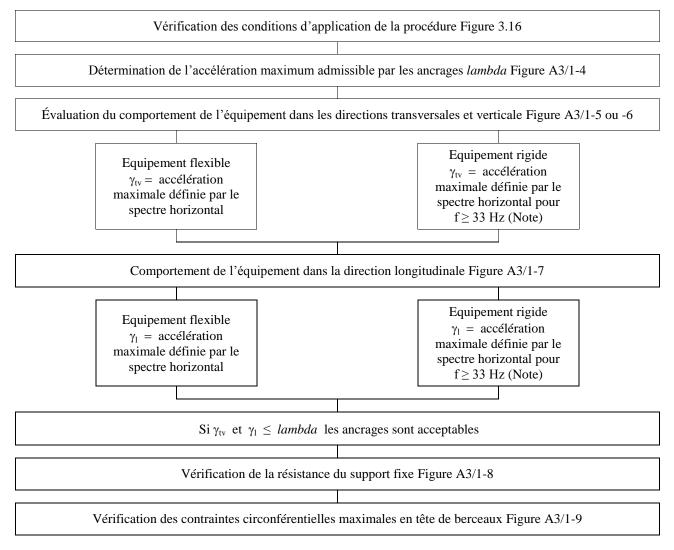
3.2.1 - Calculs analytiques simplifiés (utilisation d'abaques) [138] & [100] (Procédure 1)

Cette procédure permet d'évaluer le comportement sismique des ballons, réservoirs et réacteurs horizontaux ainsi que des échangeurs tubulaires horizontaux en service. Cette procédure, résumée dans l'organigramme Figure 3.16 ciaprès et détaillée en 1°Partie de l'Annexe 3, est illustrée par un exemple en 2°Partie de l'Annexe 3.

Cette procédure suppose que l'équipement considéré a été réalisé conformément aux exigences d'un référentiel technique reconnu [186], [163] et respecte le domaine d'application défini Figure 3.16.

Cette procédure permet de vérifier que les ancrages ainsi que les supports ont une résistance suffisante et que les contraintes circonférentielles maximales en tête de berceaux sont acceptables.

-	-	Matériau (équipement et supports)	Acier au carbone	
d_i	=	Diamètre intérieur de l'équipement	$300 \text{ mm} \le d_i \le 4\ 250 \text{ mm}$	
l_réservoir	=	Longueur totale de l'équipement	1250 mm ≤ <i>l_réservoir</i> ≤ 18 250 mm	
h_cg =		Altitude du centre de gravité de l'ensemble équipement + fluide	$300 \text{ mm} \le h_cg \le 3\ 500 \text{ mm}$	
n_supports	=	Nombre de supports	$2 \le n_supports \le 6$	
d_supports	= Distance entre les supports		900 mm ≤ <i>d_supports</i> ≤ 6 000 mm	
dert supports -		Distance entre l'extrémité de l'équipement et le premier support	$a \le d_supports / 2$	
n_files	=	Nombre de files de boulons d'ancrage	<i>n_files</i> = 2 ou 3	
n_ancrages	=	Nombre de boulons d'ancrage par file	$n_ancrages = 1$ ou 2	
dist_ancrages =		Distance entre les ancrages les plus éloignés d'une même embase	300 mm ≤ dist_ancrages ≤ 3 500 mm	
Mdsv_réservoir	Mdsv_réservoir = Masse volumique (Réservoir + fluide)		950 kg/m3 ≤ <i>Mdsv_réservoir</i> ≤ 1 200 kg/m3	
Mdsv_échangeur = Masse volumique (Échangeur + fluide) 2 000 kg/m3 ≤ Mdsv_échang ≤ 2 900			2 000 kg/m3 ≤ <i>Mdsv_échang</i> ≤ 2 900 kg/m3	
Note 1 : Dans le cadre d	e la pi	résente procédure, l'équipement est considéré comme tota	lement rempli de liquide de densité 1.	


$150 \le h_cg \ / \ d_supports \le 600$	$150 \le h_cg / dist_ancrages \le 600$
---	--

Dans le cas de supports multiples, les distances entre supports doivent être sensiblement identiques.

Toutes les embases, à l'exception de l'une de celles d'extrémité (support fixe), doivent être pourvues de trous oblongs pour la boulonnerie afin de permettre la libre dilatation de l'appareil dans le sens de la longueur

Les embases des supports « déplaçables » dans le sens longitudinal doivent être pourvues de butées dans le sens transversal (Annexe 6 pour la détermination des efforts sur ces butées).

Figure 3.16 Domaine d'application de la Procédure 1

Note : Cette valeur peut être réduite à la valeur de la fréquence au-delà de laquelle il n'y a aucune amplification dynamique significative.

Figure 3.17

3.2.2 - Calculs analytiques complet (**Procédure 2**)

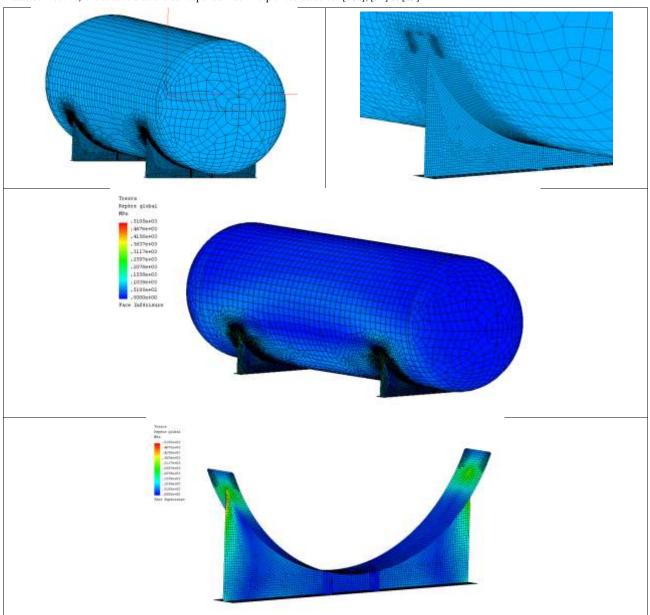
Cette procédure permet d'évaluer le comportement sismique des ballons, réservoirs et réacteurs horizontaux ainsi que des échangeurs tubulaires horizontaux neufs ou en service.

Cette procédure suppose que l'équipement considéré a été réalisé conformément aux exigences d'un référentiel technique reconnu [186], [163].

Cette procédure permet de vérifier l'ensemble des contraintes critique dans l'enveloppe de l'équipement ainsi le comportement des berceaux assurant le supportage de l'équipement.

Note: Les conditions d'exploitation notamment le taux de remplissage pour lequel la vérification est réalisée doivent être définies par l'exploitant

- 1/ Détermination des périodes impulsive et convective et des masses associées [28a], [92] & [69]
- 2/ Détermination des réactions au droit des supports [92 & 95b Procédure 4-10]
- 3/ Détermination et vérification des contraintes dans le réservoir et son supportage [95b Procédures 4-10 et 4-11]


3.3 - Détermination de la réponse sismique à l'aide de modèles numériques (Procédure 3)

Lorsque les conditions d'application de la procédure analytique ne sont pas respectées, il est possible d'évaluer les efforts dus au séisme à partir d'un modèle éléments finis « coque » ([28 §A5], [91], [92] et § 1.3.7 du présent guide) réalisé conformément aux recommandations spécifiées Figure 3.18.

La détermination des efforts sismiques peut être réalisée soit à partir d'un calcul quasi-statique soit à partir d'un calcul spectral utilisant les spectres de réponse sismiques ou encore de méthode type « push over » [172].

Note 1 : Les conditions d'exploitation notamment le taux de remplissage pour lequel la vérification est réalisée doivent être définies par l'exploitant.

Note 2 : Dans l'hypothèse d'un réservoir partiellement rempli la modélisation peut tenir compte de la répartition des masses (masse impulsive et masse convective) et des accélérations correspondant aux fréquences associées [28a], [92] & [69].

Notes relatives à la modélisation éléments finis :

Pour les berceaux (semelle, âme, renforts et doublante) : maillage de type quadrangle le plus régulier possible, de taille approximativement égale à 1/50ème du périmètre de l'appareil

Pour la jonction entre l'âme du berceau et la doublante et la zone de jonction entre la doublante et le réservoir: maillage de type quadrangle régulier de taille approximativement égale à 1/50ème du périmètre du réservoir pour la largeur et de dimension approximativement identique pour la hauteur

Puis pour les zones courantes : maillage de transition de taille approximativement entre 1/50ème et 1/5ème du périmètre de l'appareil pour la largeur et de dimension approximativement identique pour la hauteur

Figure 3.18

4 - RESERVOIRS SPHERIQUES

4.1 - Introduction

Le présent chapitre propose une première procédure analytique d'évaluation du comportement sismique applicable aux sphères aériennes ou sous talus supportées par des poteaux, ainsi qu'une deuxième procédure utilisant des modèles éléments finis permettant de traiter ces mêmes sphères ainsi que les sphères sur jupe [109], [172], [182], [181], [162], [185] et [54], [95b], [139].

Mode de défaillance		Poteaux non contreventés (Note 1)			Poteaux contreventés (Note 1)		
		E1	E2	E3	E1	E2	E3
Déformation excessive	Н	2,0 Note 5	2,0 Note 5	1	2,5 Note 5 Note 3	2,0 Note 5 Note 2	1
	V	1,5 Note 4	1,5 Note 4	1	1,5 Note 4	1,5 Note 4	1
Flambement élastique et élastoplastique (Note 6)	Н	1	1	1	2,0 Note 2	2,0 Note 2	1
	V	1	1	1	1	1	1

Note 1 : Ces coefficients doivent être utilisés pour établir un spectre réduit conformément à la procédure définie par la référence [27].

Note 2 : Plastification des tirants, et uniquement des tirants, requise.

Note 3 : Plastification des tirants requise et éventuellement plastification limitée des têtes de poteaux permise

Note 4 : Une valeur supérieure peut être utilisée sous réserve de justifications appropriées

Note 5 : D'autres valeurs sont données par les références [179] et [182] et peuvent être utilisées sous réserve de justifications appropriées

Note 6 : Il s'agit ici du voilement (instabilité) en coque des poteaux supportant la sphère. L'enveloppe de la sphère, dimensionnée pour résister à la pression, ne présentera pas de risques de flambement.

Figure 4.1 : Coefficient de comportement - Coefficients de réduction

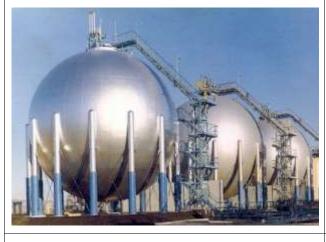


Figure 4.2

Figure 4.3

Figure 4.4 : Instabilité (Flambement) des poteaux de supportage d'une sphère [64] Séisme de Tohoku, Magnitude 9 Japon 2011

4.2 - Estimation de la réponse sismique à partir de calculs analytiques (Procédure 1)

Cette procédure analytique, détaillée en 1°Partie de l'Annexe 4, permet de déterminer les fréquences fondamentales de l'équipement et de calculer et d'évaluer les contraintes sismiques dans l'équipement. Cette procédure est illustrée en 2° Partie de l'Annexe 4 par un exemple complet.

Cette procédure s'applique aux équipements neufs ou en service et suppose que l'équipement considéré a été ou sera réalisé conformément aux exigences d'un référentiel technique reconnu [186], [163].

Le logigramme Figure 4.5-3 correspond aux sphères aériennes supportées par des poteaux non contreventés, celui Figure 4.5-4 correspond aux sphères aériennes supportées par des poteaux contreventés (Figure 4.5-1 et Figure 4.5-2).

Pour les sphères sur jupe, sauf justification particulière de la procédure analytique employée, il convient de se reporter à la procédure 2 du présent chapitre. Pour les sphères, sur poteaux ou sur jupe mais sous talus (Figure 4.3), il convient de se reporter aux documents spécifiques [161] [177].

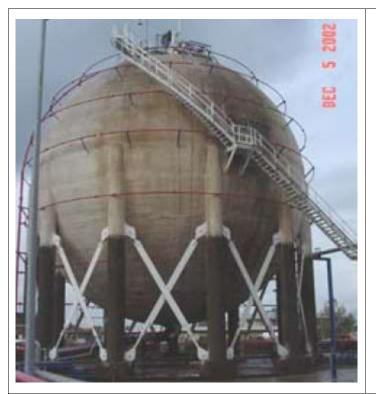


Figure 4.5-1 : Tirants (uniquement destinés à « reprendre » des efforts en traction) [103]

Figure 4.5-2 : Exemples de sphères pourvues de différents types de tirants

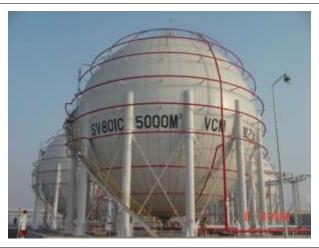
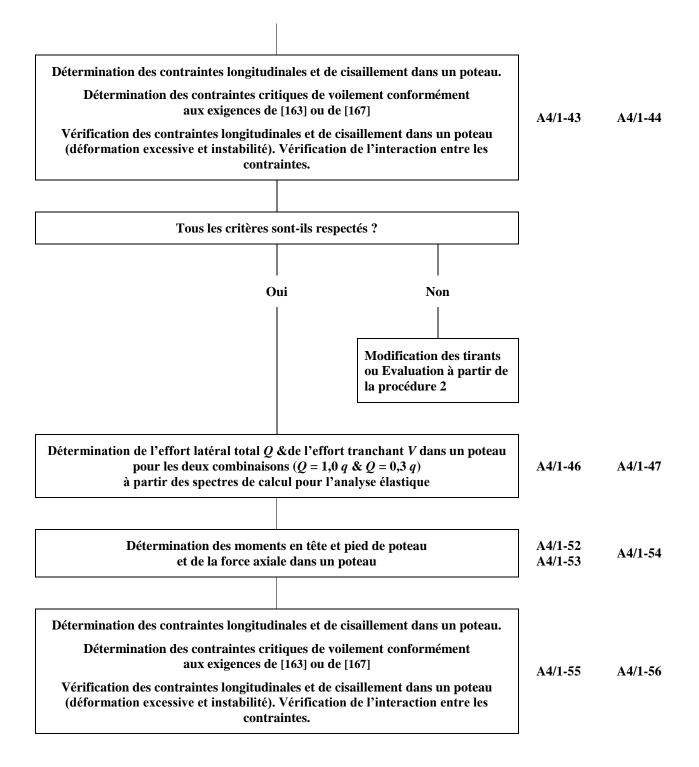
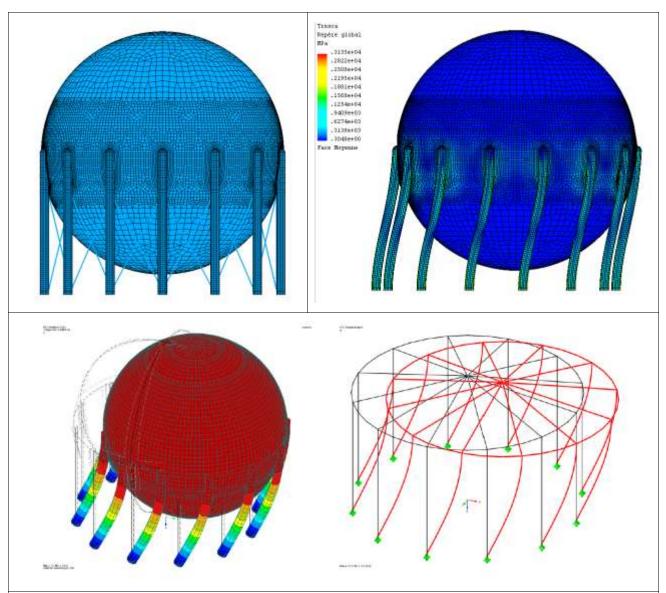



Figure 4.5-3 : Sphère - Poteaux non contreventés : Organisation des calculs Figure A4/1-3 Détermination des masses impulsive et convective Calcul de la fréquence propre fondamentale Figure A4/1-4 du mode impulsif dans la direction horizontale Calcul de la fréquence propre fondamentale Figure A4/1-4 du mode impulsif dans la direction verticale Détermination de la fréquence propre du 1° mode convectif **Figure A4/1-5** Détermination de l'effort latéral total Q & de l'effort tranchant V dans un poteau A4/1-19 A4/1-20 pour les deux combinaisons (Q = 1,0 q & Q = 0,3 q)Détermination des moments en tête et pied de poteau A4/1-25 A4/1-27 A4/1-26 et de la force axiale dans un poteau Détermination des contraintes longitudinales et de cisaillement dans un poteau. Détermination des contraintes critiques de voilement conformément aux exigences de [163] ou de [167] A4/1-28 A4/1-29 Vérification des contraintes longitudinales et de cisaillement dans un poteau (déformation excessive et instabilité). Vérification de l'interaction entre les contraintes.


Détermination des masses impulsive et convective Calcul de la fréquence propre fondamentale du mode impulsif dans la direction horizontale Figure A4/1-4 Calcul de la fréquence propre fondamentale du mode impulsif dans la direction verticale Figure A4/1-4 Détermination de la fréquence propre du 1° mode convectif Figure A4/1-5 Détermination de l'effort latéral total maximal Q0 (Q = 1,0 q) à partir des spectres de réponse élastique A4/1-31 Evaluation de la contrainte de traction dans un tirant pour cette situation A4/1-34 La contrainte de traction dans un tirant est-elle supérieure à la limite d'élasticité ? Oui Non Modification des tirants ou Evaluation à partir de la procédure 2 Détermination de l'effort tranchant V3 pour lequel Sigma_tirant est égale à la limite d'élasticité du matériau. A4/1-35	Figure 4.5-4 : Sphère	e - Poteaux con	treventés : Or	ganisation des	calculs		
Calcul de la fréquence propre fondamentale du mode impulsif dans la direction verticale Figure A4/1-4 Figure A4/1-4 Figure A4/1-4 Figure A4/1-4 Détermination de la fréquence propre du 1° mode convectif Figure A4/1-5 Détermination de l'effort latéral total maximal Q0 (Q = 1,0 q) à partir des spectres de réponse élastique Evaluation de la contrainte de traction dans un tirant pour cette situation A4/1-34 La contrainte de traction dans un tirant est-elle supérieure à la limite d'élasticité ? Oui Non Modification des tirants ou Evaluation à partir de la procédure 2	Détermination des masse	Détermination des masses impulsive et convective					
Détermination de la fréquence propre du 1° mode convectif Détermination de l'effort latéral total maximal Q0 (Q = 1,0 q) à partir des spectres de réponse élastique Evaluation de la contrainte de traction dans un tirant pour cette situation A4/1-34 La contrainte de traction dans un tirant est-elle supérieure à la limite d'élasticité ? Oui Non Modification des tirants ou Evaluation à partir de la procédure 2 Détermination de l'effort tranchant V3 pour lequel Sigma_tirant est égale à la		Figure	A4/1-4				
Détermination de l'effort latéral total maximal Q0 (Q = 1,0 q) à partir des spectres de réponse élastique Evaluation de la contrainte de traction dans un tirant pour cette situation A4/1-34 La contrainte de traction dans un tirant est-elle supérieure à la limite d'élasticité ? Oui Non Modification des tirants ou Evaluation à partir de la procédure 2 Détermination de l'effort tranchant V3 pour lequel Sigma_tirant est égale à la					Figure	A4/1-4	
Evaluation de la contrainte de traction dans un tirant pour cette situation A4/1-34 La contrainte de traction dans un tirant est-elle supérieure à la limite d'élasticité ? Oui Non Modification des tirants ou Evaluation à partir de la procédure 2 Détermination de l'effort tranchant V3 pour lequel Sigma_tirant est égale à la	Détermination de la fréquenc	e propre du 1°	mode convect	iif	Figure	A4/1-5	
La contrainte de traction dans un tirant est-elle supérieure à la limite d'élasticité ? Oui Non Modification des tirants ou Evaluation à partir de la procédure 2 Détermination de l'effort tranchant V3 pour lequel Sigma_tirant est égale à la							
Oui Non Modification des tirants ou Evaluation à partir de la procédure 2 Détermination de l'effort tranchant V3 pour lequel Sigma_tirant est égale à la	Evaluation de la contrainte de traction	A4 /1	l -34				
Modification des tirants ou Evaluation à partir de la procédure 2 Détermination de l'effort tranchant V3 pour lequel Sigma_tirant est égale à la	La contrainte de traction dans un tirant o	est-elle supérie	eure à la limite	d'élasticité ?			
ou Evaluation à partir de la procédure 2 Détermination de l'effort tranchant V3 pour lequel Sigma_tirant est égale à la	o	oui 	N	 on 			
Détermination de l'effort tranchant <i>V3</i> pour lequel <i>Sigma_tirant</i> est égale à la limite d'élasticité du matériau. A4/1-35			ou Evaluatio	n à partir de			
	Détermination de l'effort tranchant V3 limite d'élastici	B pour lequel S ité du matéria	iigma_tirant es u.	t égale à la	A4 /1	1-35	
Détermination des moments en tête et pied de poteau et de la force axiale dans un poteau A4/1-40 A4/1-41 A4/1-41						A4/1-42	

4.3 - Détermination de la réponse sismique à l'aide de modèles numériques (Procédure 2)

Lorsque les conditions d'application de la procédure analytique ne sont pas respectées, il est possible d'évaluer les efforts dus au séisme à partir d'un modèle éléments finis « poutre » ou « coque » ([109] [172] et § 1.3.7 du présent guide) réalisé conformément aux recommandations spécifiées Figure 4.6.

La détermination des efforts sismiques peut être réalisée soit à partir d'un calcul quasi-statique soit à partir d'un calcul spectral utilisant les spectres de réponse sismiques ou encore de méthode type « push over » [172].

Notes relatives à la modélisation éléments finis « coque » :

Pour les poteaux ou la jupe (semelle, âme, partie cylindrique du poteau loin de la liaison avec la sphère) : maillage de type quadrangle le plus régulier possible, de taille approximativement égale à 1/500ème du périmètre de l'appareil

Pour la jonction entre les poteaux ou la jupe et la sphère : maillage de type quadrangle régulier de taille approximativement égale à 1/500ème du périmètre du réservoir pour la largeur et de dimension approximativement identique pour la hauteur sur une longueur d'approximativement 1/100ème du périmètre de l'appareil

Puis pour les zones courantes : maillage de transition de taille approximativement entre 1/500ème et 1/100ème du périmètre de l'appareil pour la largeur et de dimension approximativement identique pour la hauteur

Pour les zones loin des zones d'étude, le maillage peut être moins fin (ex : calotte supérieure s'il n'y a pas d'appareil, d'accessoire ou de tuyauterie dont le comportement peut être significatif)

La raideur des tirant doit être correctement prise en compte à partir d'un modèle poutre suffisamment détaillé.

Figure 4.6

5 - AUTRES EQUIPEMENTS: FOURS, AEROREFRIGERANTS, "BOITES FROIDES", CHAUDIERES

De manière générale les exigences relatives aux **fours** (Figure 5.1 & [155], [182]) devraient se limiter au maintien en place de cet équipement (E1) (OAP) et donc, essentiellement, à la vérification des ancrages de ces équipements.

Toutefois il est rappelé que les équipements destinés au fonctionnement d'un four, notamment les alimentations en combustible peuvent être pleinement concernés par les recommandations du présent guide (ERS).

Pour les fours proprement dits, équipements de type « charpente », il convient donc de se reporter au Guide Structure support [9c] et le cas échéant (Cheminée), au chapitre 2 du présent guide.

La même démarche s'applique aux **aéroréfrigérants** (Figure 5.2 & [137c]) considérés eux aussi comme des éléments de charpente et donc, pour lesquels il convient de se reporter au Guide Structure support [9c]. (OAP)

Pour ce qui est des « **boîtes froides** » (Figure 5.3), si les équipements composants ces ensembles ne sont pas solidaires des charpentes, ils doivent répondre aux exigences du présent guide. Si les équipements sont solidaires des charpentes, il convient alors de se reporter au Guide Structure support [9c].

Pour les **chaudières à tubes de fumée ou à tubes d'eau** (Figures 5.4 & 5.5), l'exigence de maintien en place nécessite de vérifier les supportages notamment à partir des propositions du Guide Structure support [9c] (OAP). Par contre, de même que pour les fours, les équipements destinés au fonctionnement, notamment les alimentations en combustible peuvent être pleinement concernés par les recommandations du présent guide (ERS).

Les équipements sur pesons (Figure 5.6), compte tenu des conditions de fixations, nécessitent en général des études spécifiques (Modèles poutre ou coque).

Ces travaux nécessitent en général la connaissance des raideurs des équipements de pesage utilisés comme appuis. Ces valeurs sont à recueillir auprès des fournisseurs de ces équipements.

Figure 5.1 Fours [155], [182]

Figure 5.2 : Aéroréfrigérants [137c]

Figure 5.3 : « Boîtes froides »

Figure 5.4 : Chaudières à tubes de fumée

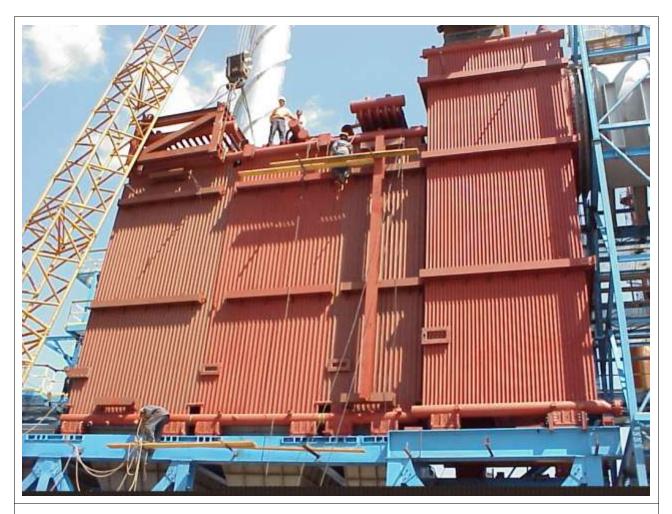
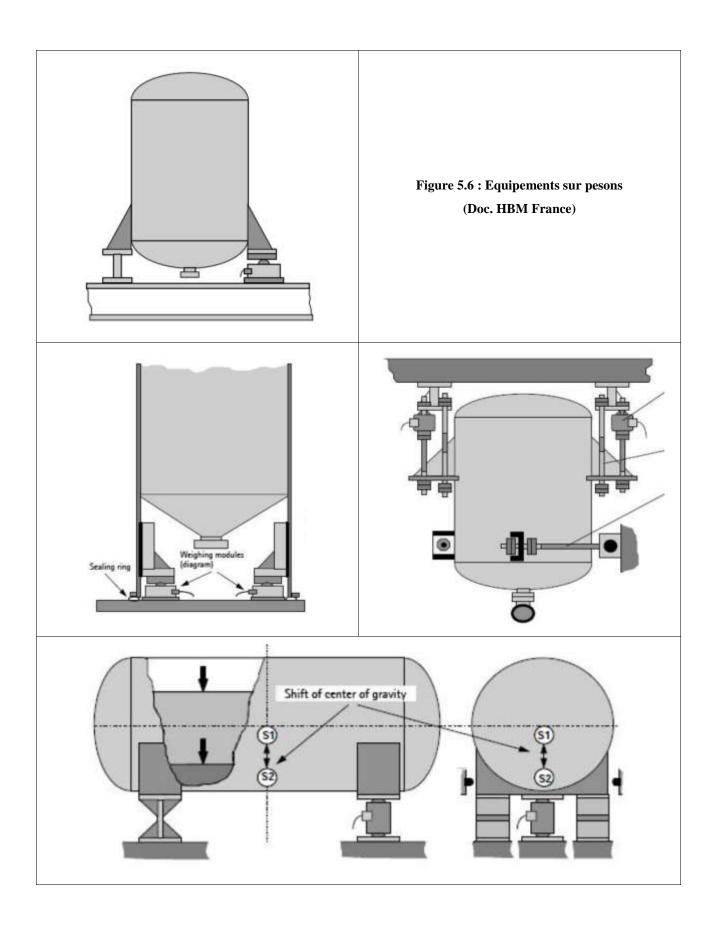



Figure 5.5 : Chaudières à tubes d'eau

6 - MACHINES TOURNANTES

Pour ces équipements, les références ci-après proposent différentes dispositions constructives permettant de répondre aux principales exigences (E1, E2 et E3) relatives au comportement sismique :

Pompes (Figure 6.1) [137c] Chapitre 4 [138] Chapitre 8.2.3 & 8.2.4

Compresseurs (Figure 6.2) [137c] Chapitre 5 [138] Chapitre 8.2.6

Groupes électrogènes (Figure 6.3) [108] [138] Chapitre 8.2.8 [178] [179] § D2

Pour les pompes, les compresseurs et les groupes électrogènes, il est recommandé que l'équipement proprement dit ainsi que sa motorisation soient solidaires du même support (« châssis commun ») afin de réduire au maximum les éventuels problèmes de désalignement susceptibles d'entraîner la défaillance de l'équipement.

Ces équipements sont très souvent installés sur des isolateurs permettant de limiter les vibrations transmises à son environnement par la machine tournante. Il convient donc de s'assurer que ces systèmes anti-vibratoires seront compatibles avec les excitations sismiques appliquées à l'ensemble considéré. De plus ces systèmes sont en général particulièrement sensibles aux efforts horizontaux et des butées dans les deux directions horizontales peuvent être nécessaires (Annexe 6).

Il est recommandé due les efforts générés par les tuyauteries raccordées aux équipements soient réduits au maximum. À cet effet, pour les pompes notamment, les dispositions définies par la norme NF CR 13931 peuvent être appliquées.

Lorsque l'opérabilité de l'un de ces équipements est requise, la justification pourra s'appuyer sur le REX d'équipements similaire ou sur des essais sur table vibrante [137c].

Agitateurs (Figure 6.4)

Lorsque le confinement du produit est requis et si en cas de défaillance de l'agitateur celui-ci risque de perforer l'enveloppe, alors la résistance de l'agitateur doit être vérifiée. À cet effet une justification pour une accélération égale à 3 fois l'accélération maximale aux ancrages de l'équipement est acceptable.

Équipement	Lorsque la fréquence propre fondamentale est calculée (Note 1)			En l'absence de calcul de la fréquence propre fondamentale (Note 2)				
	E1	E2	E3	E1	E2	E3		
Pompes	1,5	1,5	1	1,5	1,5	1		
Moteurs	1,5	1,5	1	1,5	1,5	1		

Note 1 : Ces coefficients doivent être utilisés pour établir un spectre réduit conformément à la procédure définie par la référence [27]

Note 2 : Coefficients de comportement globaux à appliquer aux efforts résultant d'un calcul linéaire

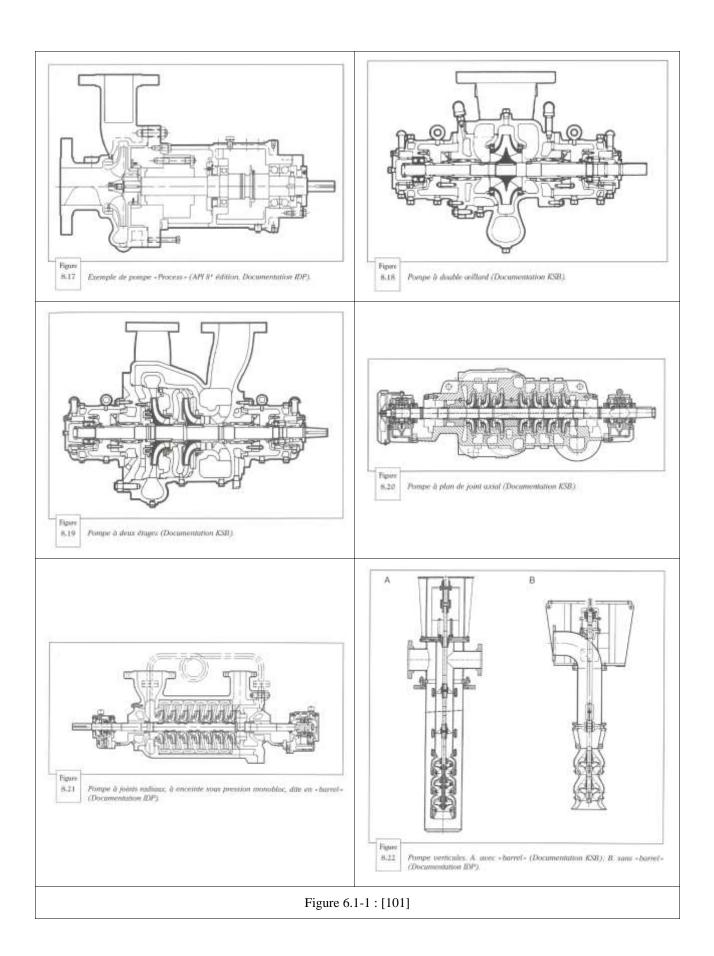
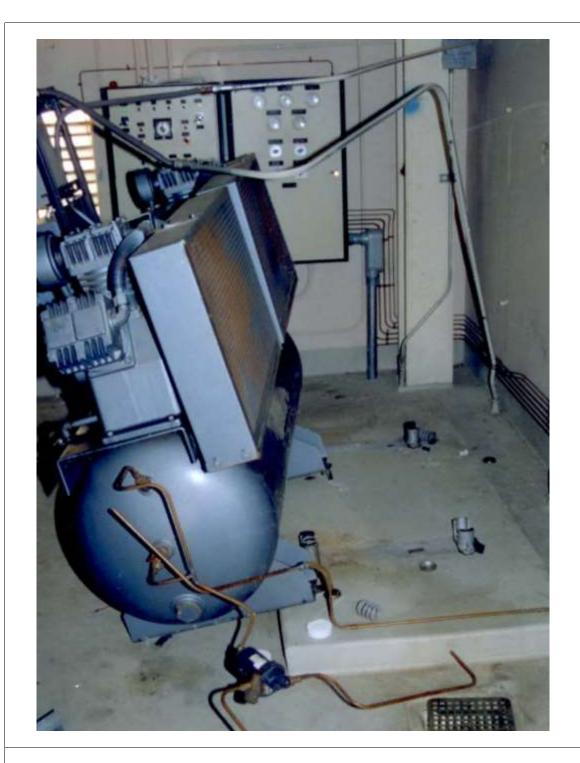



Figure 6.1-2

Figure 6.2[65] Défaillance d'un compresseur monté sur des isolateurs de vibrations Séisme de Northridge, Californie USA 1994

Figure 6.3-1

[106] Centrale hydroélectrique de Techi Groupe électrogène sur skid Amortisseur endommagé Séisme de Chi Chi, Magnitude 7,6 Formose 1999

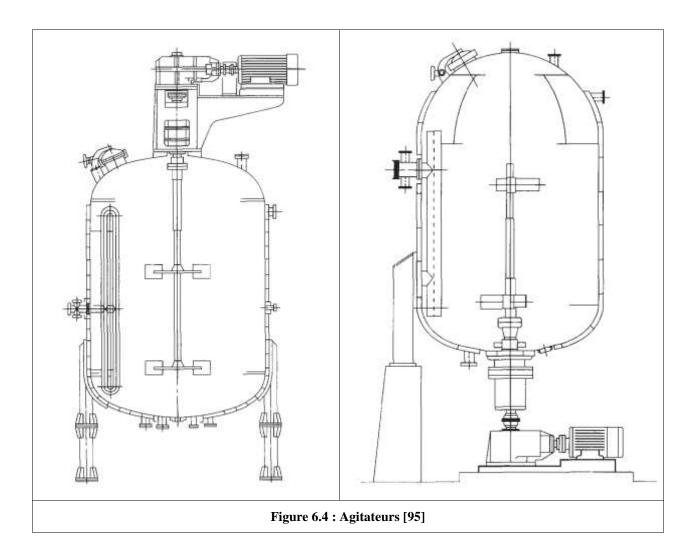
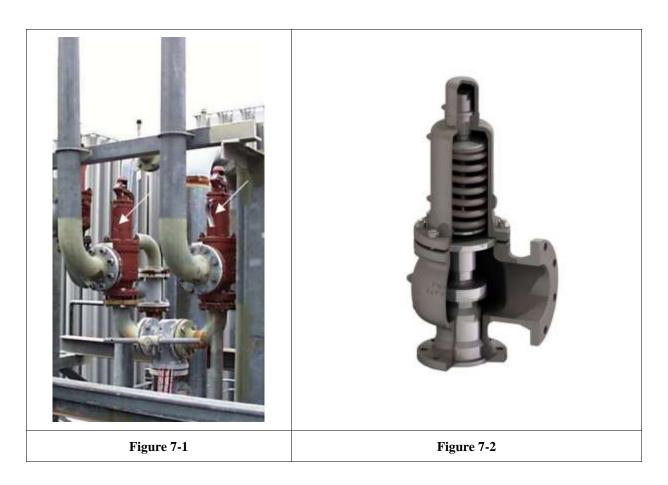


Figure 6.3-2

[106] Centrale hydroélectrique de Mingtan
Groupe électrogène sur skid
Le groupe n'a pas démarré suite à la perte d'un contact électrique mais n'a subi aucun dommage.
Séisme de Chi Chi, Magnitude 7,6
Formose 1999

Figure 6.3-3



7 - ORGANES DE SECURITE (Soupapes...)

Pour les équipements de type soupape de sécurité il convient d'appliquer les méthodologies proposée par le Guide tuyauterie & Robinetterie [9d] notamment à son Chapitre 5. Si des calculs s'avèrent nécessaires, par exemple pour évaluer l'influence de la position du centre de gravité de l'équipement, ceux-ci peuvent être réalisés à partir d'une valeur forfaitaire déterminée conformément aux propositions de la référence [184 § C2.1].

Des informations complémentaires pour ce type d'équipement sont données par la référence [137c] au §3.2.

Lorsque les capacités fonctionnelles de ces équipements doivent être préservées ou lorsque l'opérabilité est requise et en l'absence de documents de qualification provenant du fournisseur de l'équipement des essai(s) statique(s) ou dynamique(s) peuvent être nécessaires.

8 - RÉFÉRENCES

- [1] Arrêté du 10 mai 2000 relatif à la prévention des accidents majeurs impliquant des substances ou des préparations dangereuses présentes dans certaines catégories d'installations classées pour la protection de l'environnement soumises à autorisation
- [2a] Arrêté du 4 octobre 2010 relatif à la prévention des risques accidentels au sein des installations classées pour la protection de l'environnement soumises à autorisation (JO du 16 novembre 2010)
- [2b] Arrêté du 4 octobre 2010 + mise à jour de l'Arrêté du 19 juillet 2011 (JO du 5 aout 2011)
- [2c] Projet de modification de l'arrêté du 4 octobre 2010
- [3] Décret n° 2010-1254 du 22 octobre 2010 relatif à la prévention du risque sismique (JO du 24 octobre 2010)
- [4] Décret n° 2010-1255 du 22 octobre 2010 portant délimitation des zones de sismicité du territoire français (JO du 24 octobre 2010)
- [5] Arrêté du 22 octobre 2010 relatif à la classification et aux règles de construction parasismique applicables aux bâtiments de la classe dite « à risque normal » (JO du 24 octobre 2010)
- [6] Arrêté du 24 janvier 2011 fixant les règles parasismiques applicables à certaines installations classées (JO du 31 mars 2011) + (rectificatif) (JO du 9 avril 2011)
- [7] Projet d'arrêté relatif à la classification et aux règles de construction parasismique applicables aux canalisations, tuyauteries, silos, réservoirs, structures hautes et élancées de la classe dite « à risque normal »
- [8] Référence non utilisée
- [9a] DT 106 Méthodologie Générale
- [9b] Référence non utilisée
- [9c] Guide « séisme » : Structures support
- [9d] à [9e] Références non utilisées
- [10] à [26] Références non utilisées
- [27a] NF EN 1998-1 (Septembre 2005) Eurocode 8 Calcul des structures pour leur résistance aux séismes Partie 1 : Règles générales, actions sismiques et règles pour les bâtiments
- [27b] NF EN 1998-1/NA (Décembre 2007) Eurocode 8 Calcul des structures pour leur résistance aux séismes Partie 1 : règles générales, actions sismiques et règles pour les bâtiments Annexe nationale à la NF EN 1998-1 : 2005 Règles générales, actions sismiques et règles pour les bâtiments
- [28a] NF EN 1998-4 (Mars 2007) Eurocode 8 Calcul des structures pour leur résistance aux séismes Partie 4 : Silos, réservoirs et canalisations
- [28b] NF EN 1998-4/NA (Janvier 2008) Eurocode 8 Calcul des structures pour leur résistance aux séismes Partie 4 : Silos, réservoirs et canalisations Annexe Nationale à la NF EN 1998-4 : 2007 Silos, réservoirs et canalisations

- [29a] NF EN 1998-6 (Décembre 2005) Eurocode 8 Calcul des structures pour leur résistance aux séismes Partie 6 : Tours, mâts et cheminées
- [29b] NF EN 1998-6/NA (Octobre 2007) Eurocode 8 Calcul des structures pour leur résistance aux séismes Partie 6 : Tours, mâts et cheminées Annexe Nationale à la NF EN 1998-6 : 2005 Tours, mâts et cheminées
- [30] à [46] Références non utilisées
- [47] G. Gazetas

Analysis of machine foundation vibrations: state of the art

Soil Dynamics and Earthquake Engineering, 1983, Vol. 2, No. 1

- [48] à [53] Références non utilisées
- [54] Design recommendation for storage tanks and their supports with emphasis on seismic design

2010 Edition

Architectural Institute of Japan

- [55] à [63] Références non utilisées
- [64] H. Nishi

Damage on hazardous materials facilities

Proceedings of the International Symposium on Engineering Lessons Learned from the 2011 Great East Japan Earthquake, March 1-4, 2012, Tokyo, Japan

[65] FEMA E-74

Reducing the Risks of Nonstructural Earthquake Damage

A Practical Guide, Fourth Edition January 2011

- [66] à [78] Références non utilisées
- [79] G. Mylonakis, S. Nikolaou, G. Gazetas

Footings under seismic loading: Analysis and design issues with emphasis on bridge foundations

Soil Dynamics and Earthquake engineering 26(2006)

- [80] à [90] Références non utilisées
- [91] Analysis of pressurized horizontal vessels under seismic excitations

A. Di Carluccio, G. Fabbrocino, E. Salzano, G. Manfredi

14th World Conference on Earthquake Engineering October 12-17, 2008, Beijing, China

[92] Seismic analysis and design of horizontal cylindrical industrial vessels

Lazaros A. Patkas, Spyros A. Karamanos, Manolis A. Platyrrachos

 4^{th} European Workshop on the Seismic Behaviour of Irregular and Complex Structures 26-27 August, Thessaloniki, Greece

[93] à [95] Références non utilisées

[95a] D. Moss

Pressure Vessel Design Manual

Third Edition Elsevier 2004

[95b] D. Moss

Pressure Vessel Design Manual 2013

[96] L.E. Brownell & E.H. Young

Process Equipment Design

John Wiley & Sons 1959

[97] F. Nateghi, H. Kazem

Seismic evaluation of Teheran oil refinery

13th World Conference on Earthquake Engineering

Vancouver, B.C., Canada August 1-6, 2004

[98a] ASCE/SEI 7-10

Minimum Design Loads for Buildings and Other Structures

- [98b] Proposal ASCE-003 2012 Expanded Commentary to ASCE/SEI 7- 10
- [99] Étude de la tenue au séisme d'équipements industriels pétroliers et chimiques en région PACA SNPE Ingénierie Mars 1997
- [100a] Ong Lin Seng

Analysis of Twin-Saddle-Supported Vessel Subjected to Non-Symmetric Loadings

Int. J. Pres. Ves. & Piping 35 (1988)

[100b] Ong Lin Seng

Parametric Study of Peak Circumferential Stress at the Saddle Support

Int. J. Pres. Ves. & Piping 48 (1991

[100c] Ong Lin Seng

Seismic Loading on Saddle-Supported Cylindrical Vessel

Int. J. Pres. Ves. & Piping 1992

[101] P. Trambouze

Le raffinage du pétrole

Volume 4 Matériels et Equipements

Éditions Technip 1999

- [102] Référence non utilisée
- [103] P.B. Summers & al.

Seismic risk reduction at petrochemical and LNG facilities: Main results from indepth project

The 14th World Conference on Earthquake Engineering October 2008, Beijing, China

- [104] Référence non utilisée
- [105] Investigation of the 1999 Kocaeli Turkey Earthquake : Effects on Power and Industrial Facilities EPRI, Palo Alto, CA: 2001. 1003119.
- [106] Investigation of the 1999 Chi Chi Taiwan Earthquake EPRI, Palo Alto, CA: 2001. 1003120
- [107] Référence non utilisée
- [108] The January 17,1994 Northridge Earthquake

EPRI TR-106635

[109] M. Wieschollek & al.

Seismic design of spherical liquid storage tanks

COMPDYN 2011

- [110] Référence non utilisée
- [111] The 2010 Maule, Chile Earthquake: Lessons and Future Challenges

RMS 2011

[112] 8,8 The Maule earthquake, Chile 27th February 2010

ITSEMAP MAPFRE

[113] à [124] Références non utilisées

- [125a] CODE S.N.C.T Tuyauteries industrielles Divisions T1 à T3 1982
- [125b] CODETI CODE S.N.C.T Tuyauteries Code français de construction des tuyauteries industrielles 1991
- [125c] CODETI CODE S.N.C.T Tuyauteries Code français de construction des tuyauteries industrielles 1995
- [125d] CODETI 2001 Code de construction des tuyauteries industrielles
- [125e] CODETI Division 1 : 2006 Code de construction des tuyauteries industrielles
- [125f] CODETI Division 1 : 2013 Code de construction des tuyauteries industrielles
- [126] à [134] Références non utilisées
- [135] Guide de Surveillance des Ouvrages de Génie Civil et Structures

UIC UFIP DT 98 Avril 2012

- [136] à [137] Références non utilisées
- [137c] Guide for Seismic Evaluation of Active Mechanical Equipment

American Lifelines Alliance ASCE/FEMA October 2004

- [138] Seismic Evaluation procedure for Equipment in US Department of Energy Facilities DOE/EH-0545 Mars 1997 US Department of Energy
- [139] Guidelines for Seismic Evaluation and Design of petrochemical Facilities

ASCE - 2nd Edition - 2011

- [140] à [149] Références non utilisées
- [150] UFIP 1997

Fiches Guides Séismes EDF/SEPTEN

- [151] à [154] Références non utilisées
- [155] V. Ciampi & al.

Passive control for seismic protection of critical components in industrial process plants

13th World Conference on Earthquake Engineering, Vancouver, Canada 2004

- [156] à [160] Références non utilisées
 - [161] Guide for the Design, Construction and Use of Mounded Horizontal Cylindrical Vessel for Pressurized Storage of LPG at Ambient Temperatures

EEMUA Publication n°190: 2000

[162] Earthquake Resistance Design Standard for High Pressure Gas Facilities

Kanagawa Prefecture

[163a] CODAP Divisions 1 & 2 : 2010 Révision 06-14 Code de construction des Appareils à pression non soumis à l'action de la flamme

[163b] CODAP Division 3: 2013 Recommandations pour la Maintenance des Appareils à pression

[164] à [166] Références non utilisées

[167a] NF EN 1993-1-6 (Juillet 2007) Eurocode 3 - Calcul des structures en acier Partie 1-6 : Résistance et stabilité des structures en coque

[167b] NF EN 1993-1-6/NA (Décembre 2007) Eurocode 8 - Calcul des structures pour leur résistance aux séismes - Partie 1 : règles générales, actions sismiques et règles pour les bâtiments - Annexe nationale à la NF EN 1998-1 : 2005 - Règles générales, actions sismiques et règles pour les bâtiments

[168] Seismic resistance of pressure equipment and its supports

Practice note 19

IPENZ Version3 September 2013

[169] NF EN 13445-3 Clause 16

Edition 2009 Version 4

[170] Recommandations AFPS 90 pour la rédaction de règles relatives aux ouvrages et installations à réaliser dans les régions sujettes aux séismes

Presses de l'école nationale des Ponts et chaussées Vol.1 : 1990 Vol.2 : 1992 Vol.3 : 1994

[171] Guide pour l'établissement d'un plan d'inspection Révision B01, de février 2010

DT 84 UIC UFIP

[172] Wieschollek & al.

Guidelines for Seismic Design and Analysis of Pressure Vessels

ASME 2013 Pressure Vessels and Piping Conference July 14-18, 2013, Paris, France

[173] H. Bednar

Pressure Vessel Design Handbook

1991, 2nd Edition, Krieger Publishing Company

[174] Référence non utilisée

[175] NZS 4219:2009

Seismic Performance of Engineering Systems In Buildings

[176] Recommandations pour la construction parasismique des installations industrielles à risque spécial

DRIRE PACA 1990

[177] Dispositions spécifiques applicables aux réservoirs sous talus destinés au stockage de gaz inflammables liquéfiés

Cahier technique professionnel AFIAP Edition initiale juin 2004 Révision MARS 2013

[178] F. Kauffmann, A. Bonnefoy, D. Fougères

Seismic qualification of en emergency generator and of its auxiliaries

I Mech E 1978

[179a] Structural safety of industrial steel tanks, pressure vessels and piping systems under seismic loading EUR 26319 EN Final report 2013

[180] Buckling of Steel Shells European Design Recommendations

ECCS CECM EKS

5th Edition September 2013

[181] Sloshing effects on the seismic design of horizontal-cylindrical and spherical industrial vessels

Spyros A. Karamanos, Lazaros A. Patkas, Manolis A. Platyrrachos

Transactions of the ASME Vol.128, August 2006

[182] Proceedings of the International Conference on Seismic Design of Industrial Facilities

RWTH Aachen University Germany 2013

- [183] Rapport CETIM N°073974 01 février 2015
- [184] Guide méthodologique pour la conception, l'installation et le diagnostic des équipements en zone sismique AFPS Cahier Technique #30 Version 2 Avril 2011
- [185] Zhi-Rong Yang & al.

Earthquake Response Analysis of Spherical Tanks with Seismic Isolation

The Twelfth East Asia-Pacific Conference on Structural Engineering and Construction 2011

[186] ISO 16528-1 :2007 Chaudières et récipients sous pression -- Partie 1: Exigences de performance

ISO 16528-2 :2007 Chaudières et récipients sous pression -- Partie 2: Procédure pour répondre aux exigences de l'ISO 16528-1

ANNEXE 1 GENERALITES

1° PARTIE DETERMINATION SIMPLIFIEE DE SPECTRES DE PLANCHER [9c]

a_h_sp	=	Accélération absolue au droit du supportage de l'équipement considéré tenant compte du couplage éventuel entre la structure porteuse et l'équipement
	=	$\left(\frac{a_sp}{q_sp}\right) KT $ A1/1-1

avec

a_sp	=	Accélération absolue de la structure porteuse à la fréquence f_sp et à la cote h_sp	
		Formulation complète	
	=	$\left[C_{part_sp^{2}} a_{N^{2}} Ra^{2} \left(\frac{h_sp}{H_sp}\right)^{2\alpha} + a_{N^{2}} \left[1 - C_{part_sp} \left(\frac{h_sp}{H_sp}\right)^{\alpha}\right]^{2}\right]^{1/2}$	A1/1-2
		Formulation simplifiée	
	=	$a_N^2 \left[1 + C_part_sp^2 Ra^2 \left(\frac{h_sp}{H_sp} \right)^{2\alpha} \right]^{1/2}$	A1/1-3

et

a_N	=	Accélération maximale du sol
C_part_sp	=	Coefficient de participation du mode de la structure porteuse dans l'hypothèse d'un comportement monomodal de cette dernière
	=	$\frac{2 \alpha + 1}{\alpha + 1}$ avec $\alpha = 1$ pour les portiques non contreventés et $\alpha = 1,5$ pour les portiques contreventés

f_eq	=	Fréquence propre de l'équipement
f_limite	=	16,7 Hz (T=0,06s) [98], [9c]
f_sp	=	Fréquence propre de la structure porteuse : f1_sp & fn_sp
h_sp	=	Cote du plancher considéré
H_sp	=	Hauteur totale de la structure porteuse

KT	=	Coefficient d'amplification tenant comp porteuse et l'équipement	te des phénomènes de couplage entre la	structure
		f_limite < f_eq	KT = 1	A1/1-5
		$1,2 \ fn_sp \le f_eq \le f_limite$	$KT = 5 - 4 \frac{\log\left(1,2 \frac{fn_sp}{f_eq}\right)}{\log\left(1,2 \frac{fn_sp}{f_limite}\right)}$	A1/1-6
		$0.8 f1_esp \le f_eq \le 1.2 fn_sp$	KT = 5	A1/1-7
		$f_eq \leq 0.8 f1_sp$	$KT = \frac{5}{\left(0.8 \frac{f1_sp}{f_eq}\right)^2}$	A1/1-8
		$\frac{f_eq}{f_sp}$ Non connu	KT = 5	A1/1-9

q_sp		Coefficient de comportement de la structure porteuse égal à 1,5 sauf justification particulière
Ra	=	Amplification spectrale, égale à 2,5 sauf justification particulière, mais toujours supérieure ou égale à 1

SPECTRES T	RANSFERRES			Page 1 03/03/15
Accélération du sol	a_N =	2,04	m/s2	
Cote du plancher considéré	$h_sp =$	32,54	mm	
Hauteur totale de la structure porteuse	H_sp =	32,54	mm	
Coefficient de réduction	10/20	1,50		
de la structure porteuse	q_sp =	1,50	Portique	1
Coefficient relatif au contreventement	$\alpha =$	1,50	& Tirants	1,5
Coefficient de participation				
du mode fondamentale de la structure porteuse	C_part_sp =	1,60		[9e] A1/1-4
Amplification spectrale du mode de la structure porteuse	R_a =	1,22	2,5 par défau	ut
Accélération absolue	a_sp =	4,47	m/s2	[9e] A1/1-2
de la structure porteuse	a_sp =	4,17	m/s2	[9e] A1/1-3
Fréquence propre de l'équipement	f eq =	3,50	Hz	
Fréquences propres de la structure porteuse	f1_sp =	0.93	Hz	
	$fn_sp =$	1,44	Hz	
	$f_{\underline{}}$ limite =	16,70	Hz	
Coefficient d'amplification fonction				[9e] A1/1-5
du couplage structure porteuse - équipement amortissement = 5%	KT =	3,76		[9e] A1/1-6 [9e] A1/1-7 [9e] A1/1-8
Accélération absolue au droit				26500000
du supportage de l'équipement étudié	a_h_sp =	11,20	m/s2	[9e] A1/1-1

ANNEXE 2 COLONNE SUR JUPE

1° PARTIE DETERMINATION DES FREQUENCES PROPRES HORIZONTALES ET VERTICALE (Procédure 1)

Notations

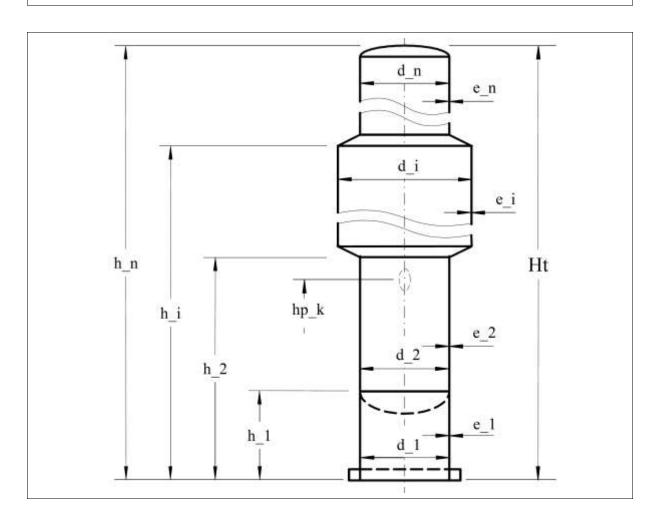


Figure A2-1

Fréquence propre en flexion / Séisme horizontal				
$f = \frac{1}{T}$ avec $T = 0$,	$02 H_{\rm t}^2 \sqrt{\frac{\sum_{1}^{\rm n} m_{\rm i} \ g \ \Delta \alpha_{\rm i} + \frac{1}{H_{\rm t}} \sum_{1}^{\rm np} P ds_{\rm k} \ \beta_{\rm k}}{\sum_{1}^{\rm n} E_{\rm i} \ d_{\rm i}^3 \ e_{\rm i} \ \Delta \gamma_{\rm i}}}$			
H_{t}	Hauteur totale			
$m_{\rm i}$	Masse linéique du tronçon considéré			
g	Accélération de la gravité			
$\Delta lpha_{ ext{ iny t}}$	Variation de la valeur du coefficient α (Figure A1-3) entre les deux extrémités du tronçon i considéré			
Pds_{k}	Poids ponctuels			
$oldsymbol{eta_{k}}$	Coefficient relatif au poids ponctuel k considéré déterminé à partir de la Figure A1-4			
$E_{\rm t}$	Module d'élasticité du matériau du tronçon i			
$d_{ m i}$	Diamètre extérieur du tronçon i			
e_{i}	Épaisseur du tronçon i			
$\Delta \gamma_{i}$	Variation de la valeur du coefficient γ (Figure A1-5) entre les deux extrémités du tronçon i considéré			

Fréquence propre « verticale »/ Séisme verticale			
$f = \frac{1}{2\pi} \left[\frac{k_1}{m_1} + \frac{k_2}{m_1} + \frac{k_2}{m_2} \pm \left\{ \left(\frac{k_1}{m_1} + \frac{k_2}{m_1} + \frac{k_2}{m_2} \right)^2 - 4 \frac{k_1 k_2}{m_1 m_2} \right\}^{1/2} \right]^{1/2}$			
$k_{i} = \frac{E_{i} S_{i}}{L_{i}}$	Jupe i=1 Colonne i=2		

Figure A2-2

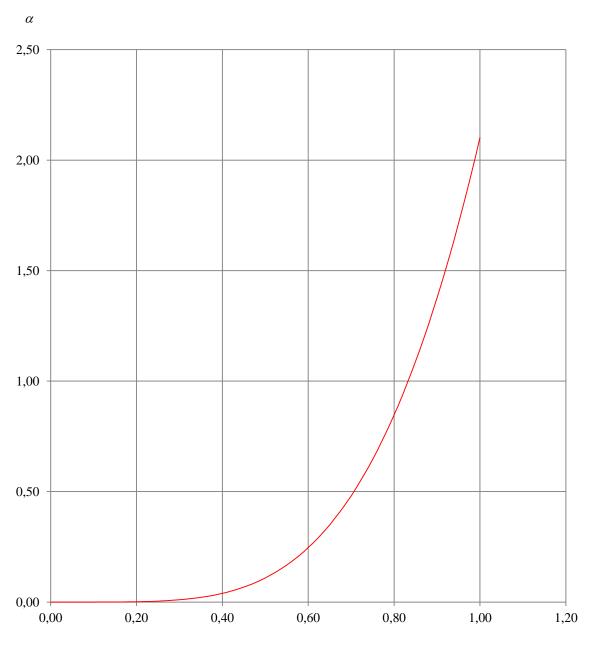
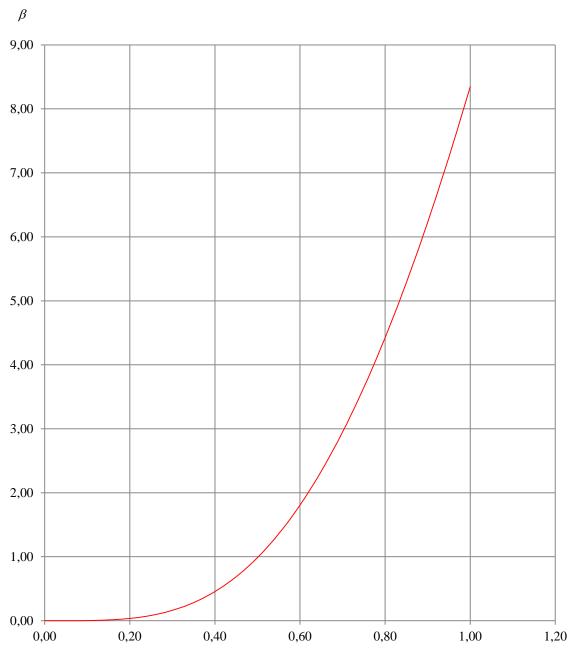



Figure A2-3

 $h_{\rm i}/H_{\rm t}$

 $h_{\rm i}/H_{\rm t}$

Figure A2-4

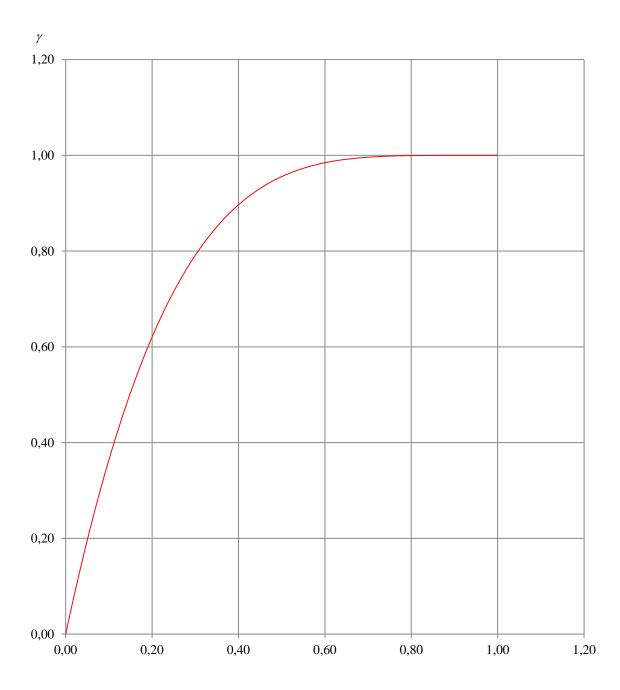
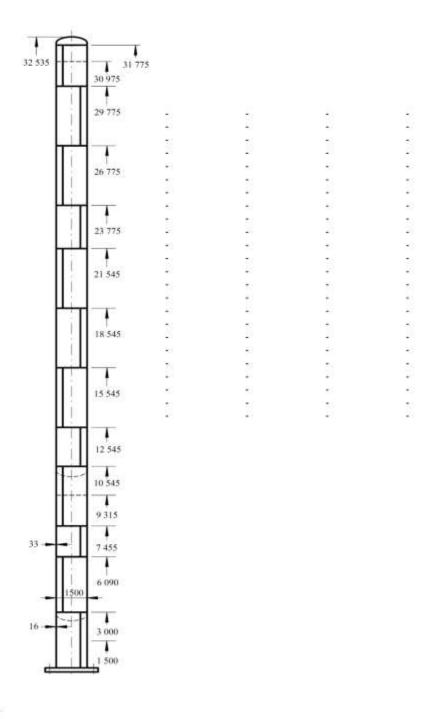


Figure A2-5

 $h_{\rm i}/H_{\rm t}$

$h_{\mathrm{i}}/H_{\mathrm{t}}$	α	β	γ	$h_{\mathrm{i}}/H_{\mathrm{t}}$	α	β	γ	$h_{ m i}/H_{ m t}$	α	β	γ
1,00	2,103000	8,347000	1,000000	0,66	0,374000	2,452000	0,992885	0,32	0,014000	0,205000	0,81710
0,99	2,021000	8,121000	1,000000	0,65	0,349700	2,336500	0,99183	0,31	0,012000	0,182600	0,80459
0,98	1,941000	7,898000	1,000000	0,64	0,326900	2,224000	0,99065	0,30	0,010293	0,16200	0,7914
0,97	1,863000	7,678000	1,000000	0,63	0,305200	2,114800	0,98934	0,29	0,008769	0,14308	0,7776
0,96	1,787000	7,461000	1,000000	0,62	0,284600	2,008900	0,98789	0,28	0,007426	0,12576	0,7632
0,95	1,714000	7,248000	0,999999	0,61	0,265000	1,906200	0,98630	0,27	0,006249	0,10997	0,7480
0,94	1,642000	7,037000	0,999998	0,60	0,246400	1,806800	0,98455	0,26	0,005222	0,09564	0,7321
0,93	1,573000	6,830000	0,999997	0,59	0,228800	1,710700	0,98262	0,25	0,004332	0,08267	0,7155
0,92	1,506000	6,626000	0,999994	0,58	0,212200	1,617700	0,98052	0,24	0,003564	0,07101	0,6981
0,91	1,440000	6,425000	0,999989	0,57	0,196500	1,527900	0,97823	0,23	0,002907	0,06056	0,6800
0,90	1,377000	6,227000	0,999982	0,56	0,181600	1,441300	0,97573	0,22	0,002349	0,05126	0,6610
0,89	1,316000	6,032000	0,999971	0,55	0,167600	1,357900	0,97301	0,21	0,001878	0,04303	0,6413
0,88	1,256000	5,840000	0,999956	0,54	0,154500	1,277500	0,97007	0,20	0,001485	0,03579	0,6207
0,87	1,199000	5,652000	0,999934	0,53	0,142100	1,200200	0,96688	0,19	0,001159	0,02948	0,5992
0,86	1,143000	5,467000	0,999905	0,52	0,130500	1,125900	0,96344	0,18	0,000893	0,02400	0,5769
0,85	1,090000	5,285000	0,999867	0,51	0,119600	1,054700	0,95973	0,17	0,000677	0,01931	0,5536
0,84	1,038000	5,106000	0,999817	0,50	0,109400	0,986300	0,95573	0,16	0,000504	0,01531	0,5295
0,83	0,988000	4,930000	0,999754	0,49	0,099800	0,921000	0,95143	0,15	0,000368	0,01196	0,5044
0,82	0,939000	4,758000	0,999674	0,48	0,090900	0,858400	0,94683	0,14	0,000263	0,00917	0,4783
0,81	0,892000	4,589000	0,999576	0,47	0,082600	0,798700	0,94189	0,13	0,000183	0,00689	0,4512
0,80	0,847000	4,424000	0,999455	0,46	0,074900	0,741800	0,93661	0,12	0,000124	0,00506	0,4231
0,79	0,804000	4,261000	0,999309	0,45	0,067800	0,687600	0,93097	0,11	0,000081	0,00361	0,3940
0,78	0,762000	4,102000	0,999133	0,44	0,061200	0,636100	0,92495	0,10	0,000051	0,00249	0,3639
0,77	0,722000	3,946000	0,998923	0,43	0,055100	0,587200	0,91854	0,09	0,000030	0,00165	0,3327
0,76	0,683000	3,794000	0,998676	0,42	0,049400	0,540900	0,91173	0,08	0,000017	0,00104	0,3003
0,75	0,646000	3,645000	0,998385	0,41	0,044200	0,497100	0,90448	0,07	0,000009	0,00062	0,2669
0,74	0,610000	3,499000	0,998047	0,40	0,039500	0,455700	0,89679	0,06	0,000004	0,00034	0,2323
0,73	0,576000	3,356000	0,997656	0,39	0,035100	0,416700	0,88864	0,05	0,000002	0,00016	0,1966
0,72	0,543000	3,217000	0,997205	0,38	0,031100	0,380100	0,88001	0,04	0,000001	0,00007	0,1597
0,71	0,512000	3,081000	0,996689	0,37	0,027500	0,345600	0,87088	0,03	0,000000	0,00002	0,1216
0,70	0,481000	2,949000	0,996101	0,36	0,024200	0,313400	0,86123	0,02	0,000000	0,00000	0,0823
0,69	0,453000	2,820000	0,995434	0,35	0,021200	0,283300	0,85105	0,01	0,000000	0,00000	0,0418
0,68	0,425000	2,694000	0,994681	0,34	0,018500	0,255200	0,84032	0	0	0.	0.
0,67	0,399000	2,571000	0,993834	0,33	0,016100	0,229100	0,82901				


Figure A2-6 : Coefficients α , β , γ en fonction du rapport h_i/H_t [95]

ANNEXE 2 COLONNE SUR JUPE 2° PARTIE EXEMPLE (Procédure 1)

Note : Dans l'exemple ci-après, les calculs ont été réalisés en considérant deux directions horizontales pour le séisme. Il est toutefois permis (voir § 1.3.4 du présent guide) en étendant aux cas des colonnes les règles des articles 3.2 et 4.2 de la référence [28a] de ne prendre en compte qu'une seule direction horizontale.

Page 1 13/02/15

Page 2 13/02/15

Caractéristiques	des différents (n)	tronçons	$i=1 \triangleq n$	1	16	
	Diamètre extérieur	Epaisseur	Module d'inertie	Pression	Dépression Pression négative	Masse vol. du fluide
	nom	mm	mm3	bar	bar	kg/m3
	d_i	e_i				m_vol_flu_i
Tronçon 01	1 566,00	16,00	2,9885E+07	(4)		0,00
Tronçon 02	1.566,00	16.00	2,9885E+07			0.00
Tronçon 03	1.566,00	33,00	5,9654E+07	39,00	1,00	1 000,00
Tronçon 04	1,566,00	33,00	5,9654E+07	39,00	1,00	1 000,00
Tronçon 05	1 566,00	33,00	5,9654E+07	39,00	1,00	1 000,00
Tronçon 06	1.566.00	33,00	5,9654E+07	39,00	1,00	1 000,00
Tronçon 07	1 566,00	33,00	5,9654E+07	39,00	1.00	1 000,00
Tronçon 08	1 566.00	33,00	5,9654E+07	39,00	1,00	1 000,00
Tronçon 09	1 566,00	33.00	5,9654E+07	39,00	1.00	1 000,00
Tronçon 10	1.566,00	33,00	5,9654E+07	39,00	1.00	1.000,00
Tronçon 11	1 566,00	33,00	5,9654E+07	39,00	1,00	1 000,00
Tronçon 12	1 566,00	33,00	5,9654E+07	39.00	1.00	1 000,00
Trongon 13	1.566,00	33,00	5,9654E+07	39,00	1.00	1 000,00
Trongon 14	1 566,00	33.00	5,9654E+07	39.00	1.00	1 000,00
Troncon 15	1.566,00	33.00	5,9654E+07	39,00	1.00	1.000,00
Tronçon 16	1 566,00	33.00	5,9654E+07	39,00	1.00	1 000,00
		*0	13.00		-	-
	-					2
	**		100			
				1.7		
		2)				0
		***	0.00		24	90
2	8	33			- 6	- 8
12	4	40	1.6	-	34	12.5
	-					
14	4.5	22	1000		120	*
2	2	1			<u> </u>	2
2						
	2.7	47			1.0	
		- 3				
	+	**	(40)			· ·
2		23				4
		40	100		- 2	
-0	-		500-0 500-0		-	-
<u> </u>		<u> </u>			93	8
			0.00	-		

Page 3 13/02/15

Colonne 42-C-403/404

Matériau		Limite d'élasticité	Résistance à la traction	Module d'élasticité	Masse vol. du matériau
Temp. de service	20,00 °C	MPa	MPa	MPa	kg/m3
remp. oc service	20,00	R p.t i	R m i	E_i	m vol mat i
		K_K_I	K_M_I	17-1	III_TOT_IIIIT_S
Tronçon 01	P265GH NF EN 10028-2 2009	265,00	410,00	210 000,00	7.850,00
Tronçon 02	P265GH NF EN 10028-2 2009	265,00	410,00	210 000,00	7.850,00
Tronçon 03	P295GH NF EN 10028-2 2009	276,80	460,00	198 500,00	7 850,00
Tronçon 04	P295GH NF EN 10028-2 2009	276,80	460,00	198 500,00	7 850,00
Tronçon 05	P295GH NF EN 10028-2 2009	276,80	460,00	198 500,00	7.850,00
Tronçon 06	P295GH NF EN 10028-2 2009	276,80	460,00	198 500,00	7 850,00
Tronçon 07	P295GH NF EN 10028-2 2009	276,80	460,00	198 500,00	7.850,00
Tronçon 08	P295GH NF EN 10028-2 2009	276.80	460,00	198 500,00	7.850,00
Tronçon 09	P295GH NF EN 10028-2 2009	276,80	460,00	198 500,00	7 850,00
Tronçon 10	P295GH NF EN 10028-2 2009	276,80	460,00	198 500,00	7.850,00
Tronçon 11	P295GH NF EN 10028-2 2009	276,80	460,00	198 500,00	7.850,00
Tronçon 12	P295GH NF EN 10028-2 2009	276,80	460,00	198 500,00	7.850,00
Tronçon 13	P295GH NF EN 10028-2 2009	276,80	460,00	198 500,00	7 850,00
Tronçon 14	P295GH NF EN 10028-2 2009	276,80	460,00	198 500,00	7.850,00
Tronçon 15	P295GH NF EN 10028-2 2009	276,80	460,00	198 500,00	7.850,00
Tronçon 16	P295GH NF EN 10028-2 2009	276.80	460,00	198 500,00	7 850,00
4	-	2	700	1.0	
- 2	2		-	-	12
192	-			1.0	-
10	-		1.00	-	
0	-		323		2
3.6		6.0			
	-			-	-
		-		-	2
- 68					
12				-	
				1.0	3
12	-				
- 2					2
19	-			-	96
9				-	
	-	-		(A	-
2.50		-	0.00		-
				-	-
	-	-	+	19	
.5	-	-		15	-
2	_	=	1		-
15	-	51	y+2.	1.5	-
2	-		72		-
	4		O.E.	24	- 3

Accélération de la pesanteur

7

9,81 m/s2

Page 4 13/02/15

	Caractéristiqu	es des différentes sect	ions	Ht =	32 535,00	
			Distance / Base		alpha	gamma
			mm			
		$\Delta h \mathrel{<=} 10\% \; Ht$	h_i	h_i/Ht	alpha_i	gamma_i
Section 00	Embase		0,00	0,0000	0,000000	0,000000
Section 01	Jupe		1 500,00	0.0461	-0.000192	0,182477
Section 02	Jupe		3 000,00	0.0922	-0,000178	0.339840
Section 03	VI		6-090,00	0,1872	0.001266	0.592932
Section 04	V2	-	7 455,00	0,2291	0.003091	0,678194
Section 05	V3		9 315,00	0.2863	0,008410	0,772156
Section 06	V3		10.545,00	0.3241	0,014873	0.821903
Section 07	V4	4	12 545.00	0.3856	0.033231	0.884863
Section 08	V5		15 545.00	0.4778	0.088950	0.945916
Section 09	V6		18 545.00	0,5700	0.196566	0.978328
Section 10	V7	-	21.545,00	0.6622	0.379267	0,992975
Section 11	VS		23 775,00	0,7308	0.578640	0,997442
Section 12	V9	<u> </u>	26 775,00	0,8230	0.953235	0.999599
Section 13	V10	-	29 775,00	0,9152	1,473818	1,000199
Section 14	VII	-	30 975,00	0,9521	1,728635	1,000114
Section 14 Section 15	VII		31 775,00	0,9766	1,914504	0,999861
Section 16	Fond		32 535,00	1,0000	2.103400	0.999400
Section 16	Long	*		1,0000		
						79
	3	- 5				
			*			
	18	3				8
-	140	:+:				
	7.5	*	7.3			
45%	(8)	8	T2		122	\$3
-		340	- 6			7.2
	1	**	19			- 61
-	12	2.7	20	7.2		92
	3.8	(4)	2 3	1.0		22
27	35		*		(2)	
4	32	40				2.4
		*	*		3.4	3.8
						1
	(2)	S	40			2.2
	18	*1	7.7	0.53		85
	-	\$ P		1.6	-	12
	18	87	86			88
100	(*)	(*)	7.0	1000	1.70	15
	2	<u>\$</u>	£1		*	
3.40		*	+1	1068	890	88
220			62	723	555	12

Page 5 13/02/15

Poids ponet, N mm mm hp_k hp_k/Ht beta_k Charge 01 2 000,00 32 000,00 0,9836 7,9747	•		N Pds_k 2 000,00	mm bp_k 32 000,00	0,9836	béta_k
Charge 01 2 000,00 32 000,00 0,9836 7,9747	•		2 000,00	32 000,00	0,9836	7,9747
	•		1			
	•		1			
		1				§
						2.4
		1				
				0.00		- 2
					1.0	
		0.7				04
	2	ů.		-		- 3
	-	4	2	9.40		- 4
	200			0.00	141	29
	0					
		(¥	#3		2.9	2.0
	-	07	-			1.7
	0	ji .		0.44		100
	-		63		24	24
	2	£	2.7			3
	· ·	92	43			52
	2					9
	×	Sec.				04
			2			S .
		24				24
		Ç.			14	
	-	·*	- :			0.6
	2		_	240		
	-		-			-
	8					8
	-	000 0 0	-			1.7
				-		
			43			
	2					
	~		-		19.	12

Page 6 13/02/15

Calcul de la pen	iière fréquence proj	pre (Flexion)	[95b] [139]		
	Poids linéique N/mm				Charges ponctuelles
	m_i . g	m_i , g . delta alpha_i	E_i , d_i ³ , e_i , delta gamma_i		Pds_k . béta_k
Tronçon 01	6,00	-0.0012	2,3546E+15	Charge 01	15 949,4121
Trongon 02	6,00	1000,0	2,0306E+15		
Tronçon 03	29,57	0,0427	6,3669E+15		- 1
Tronçon 04	29,57	0,0540	2,1449E+15	0.4	
Tronçon 05	29,57	0,1573	2.3637E+15		100
Tronçon 06	29.57	0,1911	1,2515E+15		2.0
Troncon 07	29.57	0.5429	1,5838E+15		15
Tronçon 08	29,57	1,6478	1,5359E+15		
Troncon 09	29,57	3,1827	8,1537E+14		
Tronçon 10	29.57	5,4033	3,6848E+14		
Troncon 11	29.57	5.8964	1,1237E+14	-	12
Trongon 12	29,57	11,0785	5,4270E+13		
Tronçon 13	29,57	15,3961	1,5081E+13		2
Tronçon 14	29,57	7,5361	-2,1414E+12	-	-
Troncon 15	29,57	5,4970	-6,3664E+12		
Tronçon 16	29.57	5,5865	-1.1586E+13		2
Trongon to		5,5005	-1,12002-13	-	
	2	1			0
	**	40	100		
			0.00		-
	3	2			4
	-3	-0		-	
	§	3			1
-	<u> </u>				į.
9	9	Ţ.	1		8
	23	-	-		
					2.5
9	<u> </u>	38			-
	-	-			
	8	1			8
		20			V2
	*	***			76
1	- 5	1		3	8
	2.5				
*					- 6
	8	*	•		
	*	#X		-	796
7	- 5	100	125	•	8
	8	***	Nex.		150
*	#±	*	÷:	•	<u>.</u> +
		Σ	Σ		Σ
		62,2115	2.0977E+16		0,4902

Page 7 12/03/15

Colonne 42-C-403/404

Calcul de la nomière fréquence propre (Florien)	19563 [129]	(Carlin)
Calcul de la pemière fréquence propre (Flexion)	[956] [139]	(Suite)

$$f = \frac{1}{0.02 \ H_{\rm t}^2} \ \frac{\sum_1^n E_i \ d_i^3 \ e_i \ \Delta \gamma_i}{\sum_1^n m_i \ g \ \Delta \alpha_i + \frac{1}{H_{\rm t}} \sum_1^{\rm np} P ds_{\rm k} \ \beta_{\rm k}} \qquad \begin{array}{c} {\rm Période:} & 1.157 & s \\ {\rm Fréquence:} & 0.864 & {\rm Hz} \end{array}$$

Calcul de la pemière fréquence propre (Axiale) [174]

Raideur colonns 1 090 583 396,65 N/mm Masse colonne 89 040,54 kg Raideur jupe 5 507 308 800,00 N/mm Masse jupe 1 834,82 kg

> Période : 0,044 s Fréquence propre : 22,763 Hz

Page 8 13/02/15

Caractéristique	es du séisme								
Zone de sismici	té					3			
Classe de sol						В			
Equipement					Eq	nipement ne	uf		
Arrêté				Arrêtés du	4 Octobr	e 2010 & du	13 Septe	embre 20	113
Amortissement						5			
Coefficient de re	eduction D	rection he	orizontale_1			3			
Coefficient de re	eduction D	irection he	orizontale_2			3			
Coefficient de re	éduction D	irection ve	rticale			1,5			
ghg_1 =	2,42		TBH = 0.0)5		TBV	V = 0,03		
ghg 2 =	2,42		TCH = 0.3	15		TCV	V = 0.2		
gvg =	2,18		TDH = 2.5			TDV	V = 2.5		
Csol =	1,35		TEH - 5						
neta =	1,00		TFH = 10	.00					
dhg =	0,05								
Périodes	Direction ho	rizontale_	L	1	,157 s			0,86	4 Hz
et	Direction ho	rizontale	2	1	,157 s			0,864 Hz	
Fréquences	Direction ve	rticale		0	,044 s		22,763 Hz		
Accelerations									
Bande de fréqu	oences				+/-	10	%		
				Freq		Freq. =	3	Freq. +	
Spectre de répo									
Accélération sis			$gamma_h_1 =$	1,9602		1,7641		1,6038	m/s2
Accélération sismique horizontale_2 gar		gamma_h_2 =	1,9602		1,7641		1,6038	m/s2	
Accélération sis	mique vertica	ile	$gamma_v =$	6,5400		6,5400		6,5400	m/s2
Spectre de calc	ul pour l'ana	dyse élasti	que						
Accélération sis	mique horizo	ntale_1	gamma_ch_1 =	0,6534		0,5880	1	0,5346	m/s2
Accélération sis	mique horizo	ntale_2	gamma_ch_2 =	0,6534		0,5880	1	0,5346	m/s2
Accélération sis	mique vertica	ale	gamma_cv =	3,6333		3,6333		3,6333	m/s2

Page 9 13/02/15

Colonne 42-C-403/404

Efforts dus au s	éisme	[95b] [139]				
	Q(N) = V(N) =	1,7853E+05		Coeff_Période = k =	1,3287	
	Poids enveloppe	Poids équipement	Poids du tronçon	Elévation du CDG du tronçon		[95b] [139]
	N	N	N	mm	N.mm	
	m_i,g_l_i		Wx_i	Hx_i	Wx_i . Hx_i ^Coeff_période	Fx_i
Tronçon 01	8 999,77	0.00	8 999,77	750,00	5.9480E+07	2,5928E+01
Tronçon 02	8 999,77	0,00	8 999,77	2 250,00	2,5605E+08	1,1162E+02
Tronçon 03	91 385,71	0.00	91 385,71	4 545,00	6,6176E+09	2.8847E+03
Tronçon 04	40 369,42	0,00	40 369,42	6.772,50	4,9663E+09	2,1649E+03
Tronçon 05	55 008,88	0,00	55 008,88	8 385,00	8,9878E+09	3,9179E+03
Tronçon 06	36 376.84	0.00	36 376,84	9 930,00	7.4411E+09	3,2436E+03
Tronçon 07	59 149,33	0,00	59 149,33	11 545,00	1,4782E+10	6,4434E+03
Tronçon 08	88 723,99	0,00	88 723,99	14 045,00	2,8769E+10	1,2541E+04
Troncon 09	88 723,99	0.00	88 723,99	17 045,00	3,7208E+10	1.6219E+04
Tronçon 10	88 723,99	0,00	88 723,99	20 045,00	4,6152E+10	2,0118E+04
Tronçon 11	65 951,50	0.00	65 951,50	22 660,00	4.0377E+10	1,7601E-04
Troncon 12	88 723,99	0.00	88 723,99	25 275,00	6,2801E+10	2,7376E+04
Troncon 13	88 723,99	0,00	88 723,99	28 275,00	7,2894E+10	3,1775E+04
Tronçon 14	35 489,60	0,00	35 489,60	30 375,00	3.2070E+10	1,3979E-04
Troncon 15	23 659,73	0,00	23 659,73	31 375,00	2.2320E+10	9,7295E+03
Tronçon 16	22 476,74	2 000,00	24 476,74	32 155,00	2,3857E+10	1,0399E=04
1.5399∰(3354530) 1. # 1		Congress				
	:+1	+0.	0.00	300	50 0	
8	2	22	13	828	\$2	8
-	¥8	40		5(4)	84	
	*	*2		23#23	110	
	2	10	1.5	828	12	2
	**	80				-
9		-				
2	2			2	1	-
2.40		**	*:	((*))	104	
3	2	22		320	12	200
		÷00		(4)	(4	-
		**	1.00	9.50	100	
		18			84	-
38	**	+27		(0.0)	104	-
	4	\$2			- 4	-
:5		20	100	2003	825	\sim
	Ş	100		(12)	12	
100	*:	€2			98	×
	-	7.0		10.50	1.7	~
2	2		-	무	24	2
	* !	72	0.00	9.00	89	*
*	*					
			Σ Wx_i 8 9349F+05		Σ Wx_i , Hx_i	

8,9349E+05

4,0956E+11

Page 10 13/02/15

Efforts dus au	ı sëisme	(suite)				
	Elévation de la base du tronçon	[95b] [139]				Mt résultant en pied de tronçon
	mm	N	N	N	N.mm	N.mm
	Ele_Base_i	V_i	Fx_i . delta_hg	V_i+1 , delta_ht	M_i+1	M_i
Tronçon 01	0.00	1,7853E+05	1,9446E+04	2,6776E+08	3,8090E+09	4,0768E+09
Tronçon 02	1 500,00	1,7850E+05	8,3712E+04	2,6759E+08	3,5414E+09	3,8090E+09
Tronçon 03	3 000,00	1,7839E+05	4,4569E±06	5,4232E+08	2,9946E+09	3,5414E+09
Tronçon 04	6 090,00	1,7551E+05	1,4775E+06	2,3661E+08	2,7565E+09	2,9946E+09
Tronçon 05	7 455,00	1,7334E+05	3,6436E+06	3,1513E+08	2,4377E+09	2,7565E+09
Tronçon 06	9 315,00	1,6942E+05	1,9948E+06	2,0440E+08	2,2313E+09	2,4377E+09
Tronçon 07	10 545,00	1.6618E+05	6,4434E+06	3,1948E+08	1,9054E+09	2,2313E+09
Tronçon 08	12 545,00	1,5974E+05	1,8811E+07	4,4159E+08	1,4450E+09	1,9054E+09
Tronçon 09	15.545,00	1,4720E+05	2,4329E+07	3,9293E+08	1,0278E+09	1,4450E+09
Tronçon 10	18 545,00	1,3098E+05	3,0177E+07	3,3258E+08	6,6500E+08	1,0278E+09
Tronçon 11	21 545,00	1,1086E+05	1,9625E+07	2,0797E+08	4,3741E+08	6,6500E+08
Tronçon 12	23 775,00	9,3259E+04	4,1064E+07	1,9765E+08	1,9869E+08	4,3741E+08
Tronçon 13	26 775,00	6,5884E+04	4,7663E+07	1,0232E+08	4,8705E+07	1,9869E+08
Tronçon 14	29 775,00	3,4108E+04	8,3877E+06	2,4155E+07	1,6163E+07	4,8705E+07
Tronçon 15	30.975,00	2,0129E+04	3,8918E+06	8,3195E+06	3,9517E+06	1,6163E+07
Tronçon 16	31 775,00	1,0399E+04	3.9517E+06	0,0000E+00	0,0000E+00	3,9517E+06
4					100	
12	2	23		2.0	32	2
14	(4)	23		5(4)	(9)	-
15		*:		580	2.5	
-		2		-	100	2
16	*	+3		290	Sy.	
- 1		-			-	
120	20	**	1.85	10.00	225	
	2	-		100		
		€3	1.6		68	
		20		0.50	0.5	-
	2	2				-
1.5	*	5 0		2.00	38	+
-					2	1
-	4	23		2.4	- 4	
241	140	50	180	382	225	250
0	9	23			34	
18	€	- 83	1.65	8:40	88	*
15	5 (57	1.750	450	10	
12		¥			- 1	2
2.00	*	- 61			29	
12	2			721	32	3
	*	*3	•	(*)	()6	(4)

Page 11 13/02/15

Efforts dus au se	éisme	(suite)				
	Mt résultant	Mt resultant	Mt résultant	Mt résultant	Mt resultant	Mt résultant
	en pied de	en pied de	en pied de	en pied de	en pied de	en pied de
	tronçon	tronçon	tronçon	tronçon	tronçon	tronçon
	M_{-i}	M_i	M_i	M_i	M_i	M_i
	Horizontal_1	Horizontal 2	Horizontal	Horizontal_1 rédui	t orizontal_2 rédu	Horizontal reduit
	N.mm	N.mm	N.mm	N.mm	N.mm	N.mm
Q(N) = V(N) =	1,7853E+05	1,7853E+05	1	5,9510E+04	5,9510E+04	1
Tronçon 01	4,0768E+09	4,0768E+09	5,7655E+09	1,3589E+09	1,3589E+09	1,9218E-09
Tronçon 02	3,8090E+09	3,8090E+09	5,3868E+09	1,2697E+09	1,2697E+09	1,7956E+09
Tronçon 03	3,5414E+09	3,5414E+09	5,0083E+09	1,1805E+09	1,1805E+09	1,6694E+09
Tronçon 04	2,9946E+09	2,9946E+09	4,2350E+09	9,9820E+08	9,9820E+08	1,4117E-09
Tronçon 05	2,7565E+09	2,7565E+09	3,8983E+09	9,1884E+08	9,1884E+08	1,2994E+09
Tronçon 06	2,4377E+09	2,4377E+09	3,4475E+09	8,1258E+08	8,1258E+08	1,1492E+09
Tronçon 07	2,2313E+09	2,2313E+09	3,1556E+09	7,4378E+08	7,4378E+08	1,0519E+09
Tronçon 08	1,9054E+09	1,9054E+09	2,6947E+09	6,3514E+08	6,3514E+08	8,9822E+08
Tronçon 09	1,4450E+09	1,4450E+09	2,0436E+09	4,8167E+08	4,8167E+08	6,8119E+08
Tronçon 10	1,0278E+09	1,0278E+09	1,4535E+09	3,4259E+08	3,4259E+08	4,8449E+08
Tronçon 11	6,6500E+08	6,6500E+08	9,4045E+08	2,2167E+08	2,2167E+08	3,1348E+08
Tronçon 12	4,3741E+08	4.3741E+08	6,1859E+08	1,4580E+08	1,4580E+08	2,0620E=08
Tronçon 13	1,9869E+08	1,9869E+08	2,8099E+08	6,6231E+07	6,6231E+07	9,3665E+07
Tronçon 14	4,8705E+07	4,8705E+07	6,8880E+07	1,6235E+07	1,6235E+07	2,2960E+07
Tronçon 15	1,6163E+07	1,6163E+07	2,2858E=07	5,3877E+06	5,3877E+06	7,6193E±06
Tronçon 16	3,9517E+06	3,9517E+06	5,5886E+06	1,3172E+06	1.3172E+06	1,8629E=06
	76	5		1	135	
-	2	25	28	320	89	<u> </u>
	*		5	3.5	S*	*
		20	•	•	24	
		5	<u>\$1</u>	873	35	*
12	2		211	(4)	-	~
	*	×3	*0	0.00		
1.0		*	1	(51)		
	*	22	40	2.0		-
		*	*	100		-
(*)	9	-	•		24	
- 5	5	5	18	1111	8.5	
10		-	2.0			-
26	*	8	* 2	(±)	S#	~
- 15	2	53	721	357	155	5
42	+	25	2-1	100	84	-
類	ð	56	慧		链	8
•	-	20	-	-		-
*	*	8	*	1000	R.	8
89	8	\$	18		100	8
1.		**	**	.c.	84	
	+	-			2.4	

Page 12 13/02/15

Contraintes longitudinales		Compression	sion (Spectres non réduits)			
	Dépression	Poids propre Poids enveloppe + Poids	Force résultante en pied de tronçon F_i Séisme Vertical	Mt résultant en pied de tronçon M_i Seisme Horizonta	Force résultante en pied de tronçon F_i_T al Dép, Pds propre	en pied de tronçon M_i_T
		équipement			& Séisme	& Séisme
	MPa	MPa	N	N.mm	N	N.mm
Tronçon 01	0,00	5,62	5,8434E+06	5,7655E+09	6,2859E+06	5,7655E+09
Tronçon 02	0,00	5,51	5,7845E+06	5,3868E+09	6,2180E+06	5,3868E+09
Tronçon 03	1,19	5,39	5,7257E+06	5,0083E+09	6,7938E+06	5,0083E+09
Tronçon 04	1,19	4,83	5,1280E+06	4,2350E+09	6,1047E+06	4,2350E+09
Tronçon 05	1,19	4,58	4,8640E+06	3,8983E+09	5,8004E+06	3,8983E+09
Tronçon 06	1,19	4,24	4,5043E+06	3,4475E+09	5,3856E+06	3,4475E+09
Tronçon 07	1,19	4,02	4,2663E+06	3,1556E+09	5,1113E+06	3,1556E+09
Tronçon 08	1,19	3,65	3,8795E+06	2,6947E+09	4,6653E+06	2,6947E+09
Tronçon 09	1.19	3,11	3,2993E+06	2,0436E+09	3,9963E+06	2,0436E+09
Tronçon 10	1,19	2,56	2,7190E+06	1.4535E+09	3,3274E+06	1,4535E+09
Trongon 11	1,19	2,01	2,1387E+06	9,4045E+08	2,6584E+06	9,4045E+08
Tronçon 12	1.19	1,61	1,7074E+06	6,1859E+08	2,1611E+06	6,1859E+08
Tronçon 13	1.19	1,06	1,1272E+06	2,8099E+08	1,4921E+06	2,8099E+08
Tronçon 14	1,19	0,52	5,4691E+05	6,8880E+07	8,2315E+05	6,8880E+07
Tronçon 15	1.19	0,30	3,1481E+05	2,2858E+07	5,5556E+05	2,2858E+07
Tronçon 16	1,19	0,15	1,6008E+05	5,5886E+06	3,7716E+05	5,5886E+06
		70	1.50	1.70	0.5	70
					82	
8		±3	7.00	9.0	88	*
		*				
2.5	: - 1	*0		100.00	62	: <u>*</u> :
- 1	<u> </u>	25				-
8	- 33	*8	*	8988	<u></u> (€	€
	.50	50			92	25
i i	2	2			- 2	4
38	:56	5 8			85	(#)
12	2	20		100	72	8
€	*	¥0		(*)	194	*
95		* 3	10.00		63	25
菱	2	20	140		62	¥
35		₩)			198	30
		20			34	4
38	*	*0				*
12		20		-	102	
38	*	***			98	*
(5)		80	100	120	93	75
19	27	200			84	2
*	*	53	(*)	5.5	28	150

Page 13 13/02/15

Contraintes long	itudinales	Traction	(Spectres réduits)			
	Dépression	Poids propre Poids enveloppe	Force résultante en pied de tronçon F_i	Mt résultant en pied de tronçon M_i	Force résultante en pied de tronçon F_i_T	en pied de tronçon M_i_T
		Poids	Seisme Vertical	Séisme Horizonta		
		équipement			& Séisme	& Séisme
	MPa	MPa	N	N.mm	N	N.mm
Tronçon 01	0,00	5,62	3,2463E+06	1,9218E+09	3,6888E+06	1,9218E+09
Tronçon 02	0,00	5,51	3,2136E-06	1,7956E+09	3,6471E+06	1,7956E+09
Tronçon 03	1,19	5,39	3,1809E+06	1,6694E+09	4,2490E+06	1,6694E+09
Tronçon 04	1,19	4,83	2,8489E+06	1,4117E+09	3,8256E+06	1,4117E+09
Tronçon 05	1,19	4,58	2,7022E+06	1,2994E+09	3,6386E+06	1,2994E+09
Tronçon 06	1,19	4,24	2,5024E+06	1,1492E+09	3,3837E+06	1,1492E+09
Tronçon 07	1.19	4.02	2,3702E+06	1,0519E+09	3,2151E+06	1,0519E+09
Troncon 08	1,19	3,65	2,1553E+06	8,9822E+08	2,9411E+06	8,9822E+08
Tronçon 09	1.19	3,11	1,8329E-06	6,8119E+08	2,5300E+06	6.8119E+08
Troncon 10	1.19	2,56	1,5106E+06	4.8449E+08	2,1189E+06	4,8449E+08
Troncon 11	1.19	2.01	1,1882E+06	3,1348E+08	1,7078E+06	3,1348E+08
Troncon 12	1.19	1.61	9,4857E+05	2.0620E+08	1.4023E+06	2,0620E+08
Troncon 13	1.19	1.06	6,2621E+05	9.3665E+07	9,9116E+05	9,3665E+07
Troncon 14	1.19	0.52	3,0384E+05	2,2960E+07	5,8008E+05	2,2960E+07
Trongon 15	1.19	0,30	1,7490E+05	7,6193E+06	4,1564E+05	7,6193E+06
Tronçon 16	1.19	0.15	8,8932E+04	1.8629E+06	3,0602E+05	1,8629E+06
		40	*:	11.90	4	.4.
2.4		90	**	100		
	2	2				
3.5		*:	*0	1167	0.00	
		8	-	1.0		
88	~	*	+3			*
-	1.00	-	***	11.5		
	·	2	\$			\$
38		(+)	*3			
4	8	-	23			9
SE		9	**	188	-	
8		#8	±35	0.50	851	
\$	8	丘	<u> </u>			<u> </u>
8		93	+3			18
-	270	97	90	0.50		
2	-	2	2			2
8.5		*9	*1	0.00		
82	2	2	28		2	8
28		*	80	*		
8.0			*:	1163	2.5	
		-	*		4	12
	*	(4)	**	100		96

Page 14 13/02/15

Contraintes Ion	ngitudinales	Compression	(Spectres non réduits)			
	Contraintes longitudinales Dép, Pds propre	gammaM1	Contraintes théoriques de voilement [163]	Lambda	Contraintes critiques de voilement [163]	
	& Séisme					
	MPa		MPa		MPa	
Tronçon 01	272,78	1,1	2 642,10	0.32	241,61	Non acceptable
Tronçon 02	259,24	1.1	2 642,10	0.32	241,61	Non acceptable
Tronçon 03	125,80	1,1	3 036,82	0.31	272,38	Acceptable
Tronçon 04	108,59	1.1	3 036,82	0.31	272.38	Acceptable
Tronçon 05	101,08	1,1	3 036,82	0.31	272,38	Acceptable
Tronçon 06	90,96	1.1	3 036,82	0.33	272,38	Acceptable
Tronçon 07	84,38	1,1	3 036,82	0.31	272.38	Acceptable
Tronçon 08	73,91	1,1	3 036,82	0.31	272,38	Acceptable
Tronçon 09	58,87	1.1	3 036,82	0.31	272,38	Acceptable
Tronçon 10	44,86	1.1	3 036,82	0.31	272.38	Acceptable
Troncon 11	32,14	1.1	3 036,82	0.31	272,38	Acceptable
Troncon 12	23,68	1.1	3 036,82	0.51	272.38	Acceptable
Troncon 13	13,90	1.1	3 036.82	0.31	272.38	Acceptable
Troncon 14	6,22	1.1	3 036,82	0.31	272.38	Acceptable
Troncon 15	3.81	1.1	3 036,82	0.31	272.38	Acceptable
Troncon 16	2,42	1.1	3 036,82	0.31	272.38	Acceptable
		5:		0.00	702	2
8	2	3				8
14	*	*5	47		100	
				-		
2	9	2				
						200
2	2	23				÷
		40			100	100
		*:				-
		- 5				
19		**				
2		3			12	Ş .
						~
8	9					
	9		-	100		~
		-			-	-
8	<u>Ş</u>	3		V-4	102	2
	-				-	-
2	Ş	3		43		2
12	Ž.	Ę.	2.	-		-
	*	~	-	-		-
1	1	į.				ĵ.
	-	-				-
1.70	(7.0	-	-			-

Page 15 13/02/15

Contraintes		Compression	(Spectres non réduits)			
	Contraintes circonférentielles Dépression	gammaM1	Contraintes théoriques de voilement [163]	Lambda	Contraintes critiques de voilement [163]	
	2038	1000	12500 MW		2000	
	MPa		MPa		MPa	
Tronçon 01	0.00	1,1	225,37	1.08	113,46	Acceptable
Tronçon 02	0,00	1,1	225,37	1.08	113,46	Acceptable
Trongon 03	1,19	1.1	97,97	1.74	48.98	Acceptable
Trongon 04	1,19	1.1	97,97	1.74	48,98	Acceptable
Trongon 05	1.19	1,1	97,97	1.74	48,98	Acceptable
Tronçon 06	1,19	1.1	97.97	1.74	48.98	Acceptable
Tronçon 07	1.19	1.1	97,97	1.74	48.98	Acceptable
Tronçon 08	1,19	1.1	97,97	1.74	48.98	Acceptable
Trongon 09	1.19	1.1	97,97	1.74	48,98	Acceptable
Trongon 10	1.19	1.1	97,97	1.74	48,98	Acceptable
Tronçon 11	1,19	1.1	97,97	1.74	48,98	Acceptable
Tronçon 12	1.19	1.1	97,97	1.74	48,98	Acceptable
Trongon 13	1,19	1.1	97,97	1.74	48,98	Acceptable
Troncon 14	1.19	1.1	97.97	1.74	48.98	Acceptable
4 (5 A (6 A	0.000	11555			48,98	
Tronçon 15	1.19	1.1	97,97	1.74		Acceptable
Tronçon 16	1,19	1,1	97,97	1,74	48,98	Acceptable
	- 3		-			
52		22				2
- 1		*	5			7
		*				
100		*	*			
18		- 5	*	*		1
72						
135	-	*	20		-	*
35	8	55	5.5	0.00	-	75
<u> </u>		-	€		-	-
17	5		55	e >	-	17
12	2	2		12.	7.2	2
7.	-	+	-	6	-	-
62	55	69	*:		-	at l
32			2-9	-	-	2
€8			*:		-	96
		*	-	12		8
- 3	-		43		-	
		*			- 4	
10	<u></u>		20	12	-	<u>~</u>
7.0	×					-
12				12.0		
12						2

Page 16 13/02/15

Contraintes		Compression	(Spectres non réduits)			
	Cisaillement	gammaM1	Contraintes théoriques de voilement [163]	Lambda	Contraintes critiques de voilement [163]	
	Séisme	454	DIN 18800/4	#REF!	#REF1	
	MPa		MPa	- KLA	MPa	
	1		3744		200	
Troncon 01	1,07	1.1	631.97	0.49	122.31	Acceptable
Troncon 02	1.07	1.1	631.97	0.49	122.31	Acceptable
Troncon 03	0.52	1,1	462,89	0.61	122,04	Acceptable
Tronçon 04	0.51	1.1	462.89	0.61	122,04	Acceptable
Troncon 05	0,50	1,1	462,89	0.61	122,04	Acceptable
Troncon 06	0.49	1,1	462.89	0.61	122,04	Acceptable
Troncon 07	0.48	1.1	462,89	0.61	122.04	Acceptable
Troncon 08	0,46	1.1	462.89	0.61	122.04	Acceptable
Troncon 09	0.43	1.1	462.89	0.61	122,04	Acceptable
Troncon 10	0.38	1.1	462,89	0.61	122,04	Acceptable
Troncon 11	0.32	1.1	462.89	0.61	122.04	Acceptable
Troncon 12	0.27	1.1	462.89	0.61	122,04	Acceptable
Trongon 13	0.19	1.1	462.89	0.61	122.04	Acceptable
Tronçon 14	0.10	1.1	462.89	0.61	122,04	Acceptable
Troncon 15	0,06	1.1	462,89	0.61	122.04	Acceptable
Tronçon 16	0.03	1.1	462,89	0.61	122.04	Acceptable
				-	-	
-	9		2			
190	56	×:	47	100		
			2			
						-
197						
	8					2
24		96				590
1		2				
2	2	22	2			
	-	-		-		
8	-	3		-		9
14	-	25	41	-		:=
-	-	-	-	-		
8	2	2	2	1		12
	-		-1	7 = 2	-	
8		<u> </u>	36	-		2
24	*	26	21		-	
	-	-			-	
	9	- 2				
			2.0			

Page 17 13/02/15

Colonne 42-C-403/404

Interaction [163]

	k_x	k_teta	k_tau	k_i	<= I	
Tronçon 01	1.93	1.57	1.94	0,15	1.5205	Non acceptable
Troncon 02	1.93	1.57	1.94	0.15	1,3780	Non acceptable
Tronçon 03	1.94	1,37	1.87	0.02	0,2756	Acceptable
Tronçon 04	1.94	1.37	1.87	0.02	0,2089	Acceptable
Tronçon 05	1.94	1.37	1.87	0.02	0.1826	Acceptable
Tronçon 06	1,94	1.37	1.87	0.02	0,1501	Acceptable
Tronçon 07	1.94	1.37	1.87	0.02	0.1307	Acceptable
Tronçon 08	1.94	1.37	1.87	0.02	0,1026	Acceptable
Tronçon 09	1.94	1,37	1.87	0.02	0,0685	Acceptable
Tronçon 10	1.94	1.37	1.87	0.02	0.0433	Acceptable
Tronçon 11	1.94	1.37	1.87	0.02	0,0260	Acceptable
Tronçon 12	1.94	1.37	1.87	0.02	0,0175	Acceptable
Troncon 13	1.94	1,37	1.87	0.02	0.0107	Acceptable
Tronçon 14	1.94	1.37	1.87	0.02	0,0077	Acceptable
Troncon 15	1.94	1.37	1.87	0.02	0.0073	Acceptable
Tronçon 16	1.94	1,37	1.87	0.02	0,0071	Acceptable
		7.1	(*)		1.7	-
		2			2	
	25	**	0.5%	5.5	125	-
湿	27	20	12	-	12	9
*	147	47	-	94.7	12	95
	*			25	9.7	
2	2				14	2
*	*	**	. (*)			*
		*				
4	45	29			2	
	7					
2		2		4		2
	*	-				
17		5)	(*)		1.7	
2	-			*	-	
*	23	5)	(*)	7.5	25	8
	-			*		*
*	+3	+		-	-	+
5	59	55		25	98	- 5
	45	-		-	72	95
35	(*)	7		-		.50
83	5	70	1.50	45.0	15	55
*	4	23		-	S-	2)
	20	+0	(e)		290	

Page 18 13/02/15

Contraintes		Traction	(Spectres réduits)			
	Cont. Circonf.	Cont, Cisail.	Cont. longi.	Force résultante en pied de	Mt résultant en pied de	Contraintes longitudinales
	Stgma_Teta	Tau	270 (200)	tronçon	tronçon	Sigma_z
	Pression	Séisme	Pression	F_i_T	M_i_T	
				Pres, Pds propre		
	9.2077	92.007	0.000	& Séisme	& Séisme	& Séisme
	MPa	MPa	MPa	N	N.mm	MPa
Troncon 01	0.00	1.07	0.00	2.8039E+06	1,9218E+09	99.93
Troncon 02	0.00	1.07	0.00	2,7802E+06	1,7956E+09	95.40
Troncon 03	92.54	0,52	46,27	9,8171E+06	1,6694E+09	88,45
Tronçon 04	92,54	0.51	46,27	9,5765E+06	1,4117E+09	82,65
Trongon 05	92,54	0.50	46,27	9,4702E+06	1,2994E+09	80,11
Troncon 06	92,54	0.49	46,27	9.3253E+06	1,1492E+09	76,70
Tronçon 07	92,54	0.48	46,27	9,2295E+06	1,0519E+09	74,48
Tronçon 08	92,54	0.46	46,27	9,0738E+06	8,9822E+08	70,95
Troncon 09	92,54	0.43	46,27	8,8401E+06	6.8119E+08	65,87
Tronçon 10	92,54	0,38	46,27	8,6065E+06	4,8449E+08	61,13
Tronçon 11	92,54	0.32	46,27	8,3729E+06	3,1348E+08	56,83
Tronçon 12	92,54	0,27	46,27	8,1992E+06	2,0620E+08	53,96
Troncon 13	92,54	0,19	46,27	7,9656E+06	9,3665E+07	50,63
Troncon 14	92,54	0.10	46,27	7,7319E+06	2,2960E+07	48.01
Tronçon 15	92,54	0.06	46,27	7,6385E+06	7,6193E+06	47.18
Tronçon 16	92,54	0.03	46,27	7,5762E+06	1,8629E+06	46,70
1100400 10	ewier.	70	1.5			
		29				
-	-	-0	10±2	500	20-2	140
		20			- 2	2
		20				2
		***	20.00			-
3	3	<u> </u>			35	1
	-	20	7.4			**
	2					
	8	<u> </u>			- 2	39
-			5000		-	*
8	- 3	2		- 6	- 9	9
N	W.	20	0.40		19	-
		***	0.50		12	
	9	<u> </u>			- 5	8
	-	-	0.00			-
į	3	33				\$
Ō	8	1			<u> </u>	į
3	ā	<u> </u>			1	8
			20000	0.00	G.	
-	*	*0	\$\$ * 23		100	*
9	8	<u> </u>			8	8
	-	-0	(1+2)		100	-1
8			10.00	5.40	2.5	37

Traction

Contraintes

GUIDE SEISME - EQUIPEMENTS CHAUDRONNES Cheminées / Torchères, Colonnes et réacteurs verticaux, Réservoirs verticaux

Page 19 13/02/15

Colonne 42-C-403/404

(Spectres réduits)

	Sigmat	Sigma2	Sigma1+0,5P	Sigma2+0,5P	Sigma_eq Tresca	0-
					[163]	
	MPa	MPa	MPa.	MPa	MPa	R_p,t_i
Tronçon 01	99,94	-0.01		50001	99,95	Acceptable
Troncon 02	95.41	-0.01			95,43	Acceptable
Tronçon 03	92,60	88,39	94,55	90,34	94,55	Acceptable
Tronçon 04	92,56	82,62	94.51	84,57	94,51	Acceptable
Tronçon 05	92,56	80,09	94,51	82,04	94,51	Acceptable
Tronçon 06	92,55	76,69	94.50	78,64	94,50	Acceptable
Tronçon 07	92,55	74,47	94,50	76,42	94,50	Acceptable
Tronçon 08	92,55	70,94	94,50	72,89	94,50	Acceptable
Tronçon 09	92,54	65,86	94,49	67,81	94,49	Acceptable
Tronçon 10	92,54	61,13	94,49	63,08	94,49	Acceptable
Trongon 11	92,54	56,82	94,49	58,77	94,49	Acceptable
Tronçon 12	92,54	53,96	94,49	55,91	94,49	Acceptable
Tronçon 13	92,54	50,63	94,49	52,58	94,49	Acceptable
Tronçon 14	92,54	48,01	94,49	49,96	94,49	Acceptable
Tronçon 15	92,54	47,18	94,49	49,13	94,49	Acceptable
Tronçon 16	92,54	46,70	94,49	48,65	94,49	Acceptable
	20	70	2.5	0.57	0.5	
-		23			- 2	
	*1	*3	1283	(40)	28	*
		-				2
· ·		**				97
	*	**			0.5	(*)
2	<u> </u>	- 2			1	
35	÷:	*3		26	28	*
	-	70		62.0	95	23
4	¥3	23			32	
	#1	€ 3		•		(*)
2	21	25		200		27
	*	*			E-	
525	***	8 8			8	
-	29	23			<u> </u>	4
(4)	40	83				80
		20				
		*				-
	*	73	5.00		2.5	*
2	27	10		-		2.0
39	*	*			*	
17	21	70	3.50	0.70	55	20
2	4	- 23			14	122
26	*3	*0	7.80	320	- 35	8

Page 1 13/02/15

Colonne 1º partie : Jupe

S			

Pression d'étude	Pétude =		MPa
Température d'étude	Tétude =	20,00	®C
Matériau	NF EN	¥ 10028-2 2002	P265GH
Limite d'élasticité	Rpt_i =	265,00	MPa
Module d'élasticité	E i =	210 000,00	MPa
Coefficient de Poisson	$_{\mathrm{mi}}=$	0,30	
Caractéristiques géométriques du composant		Cylindre	
Diamètre intérieur	di_i =	1 500,00	nun
Epaisseur	e i -	16,00	mm
Longueur	l_i =	3 000,00	nm
Rayon moyen	m_i =	766,00	nun
Conditions aux limites du composant		Direction	Direction
		radiale	méridienne
Extrémité 1		Appuye	Appuye
Extrémité 2		Appuve	Appuyé
Imperfections de fabrication			
Référentiel de construction		CODAP 2010	
Diamètre maximum mesuré		00	nun
Diamètre minimum mesuré		**	mm
Ovalisation		0.015	
Classe de tolérance relative à l'ovalisation		С	
Ecarts de forme			
Dir. longitudinale hors zones soudées		6,00	mm
Dir. longitudinale zones soudées		7	mm
Dir. circonférentielle hors zones soudés			nun
Dir. circonférentielle zones soudées		3	mm
Classe de tolérance relative aux écarts de forme		c	Val. max. Ecart: 4,00
Ecart d'alignement des fibres moyennes		2,60	mm
Ecart d'alignement des fibres moyennes / e_i		0.1625	*
Classe de tolérance relative aux écarts d'alignement		B	elle.

Page 2 13/02/15

Colonne 1º partie : Jupe

Contrainte critique de voilement longitudinale

$$\frac{R}{e_n} \le 0.03 \frac{E}{R_{\rm pt}}$$
 Eq. C9.A12.5-1 47.88 > 23.77

La vérification du voilement sous l'effet des contraintres de compresion longitudinales est nécessaire

Paramètre omega_x	Eq. C9.A12.5-5	omega_x =	27,10	
Coefficient C_xb	Tab. C9.A12.5	C_xb =	6,00	
Coefficient C_x	§ C9.A12.5 c)	C_x =	1.00	
Contrainte théorique de voilement	Eq. C9.A12.5-12	sigma_xRcr =	2 642,10	MPa
Paramètre Q (Tolérances)	§ C9.A12.5 e)	Q =	16,00	
Ampl. d'imperfection delta_wk	Eq. C9.A12.5-16	delta_wk =	6,92	
Facteur d'imperfection alpha_x	Eq. C9.A12.5+17	$alpha_x =$	0,39	
Elancement limite lambda_cc0x	Eq. C9.A12.5-18	$lambda_cc0x =$	0,20	
Facteur dom.plast. beta_x	Eq. C9.A12.5-19	beta_x =	0,60	
Exposant d'interaction neta_x	Eq. C9.A12.5-20	neta_x =	1,00	
Elancement réduit lambda_ecx	Eq. C9.A12.5-21	lambda_ccx =	0,32	
Elancement limite lambda_ccpx	Eq. C9.A12.5-22	$neta_x =$	0.99	
Coeff. de réduction khi_x	Eq. C9.A12.5-23+	khi_x =	0.91	Flambement élasto-plastique
Contrainte critique	Eq. C9.A12.5-26	sigma_xRk =	241,61	MPa
Force F_cmax	Eq. C9.A12.5-27	F_cmax =	1,86E+07	N
Moment M_max	Eq. C9.A12.5-28	M_max =	7,12E+09	N.mm
Coefficient d'interaction	Eq. C9.A128.3-1	k_x =	1,93	

Page 3 13/02/15

Colonne 1° partie : Jupe

Contrainte critique de voilement circonférentiel

$$\frac{R}{e_u} \le 0.21 \sqrt{\frac{E}{R_{pt}}}$$
 Eq. C9.A12.6-1 47.88 > 5.91

La vérification du voilement sons l'effet des contraintres de compresion circonférentielles est nécessaire

Paramètre omega_teta	Eq. C9.A12.6-4	omega_teta =	27,10	
Coefficient C_teta	Tab. C9.A12.6-1	C_teta =	1,50	
Coefficient C_tetas	Tab. C9.A12.6-2	C_tetas =	1,51	
Contrainte théorique de voilement	§ C9.A12.6 d)	sigma_tetaRcr =	225,37	MPa
Facteur alpha_teta (Tolérances)	§ C9.A12.6 e)	alpha_teta =	0,50	
Elancement limite lambda_cc0teta	Eq. C9.A12.6-19	lambda_cc0teta =	0.40	
Facteur dom.plast. beta_teta	Eq. C9.A12.6-20	beta_teta =	0,60	
Exposant d'interaction neta_teta	Eq. C9.A12.6-21	neta_teta =	1,00	
Elancement réduit lambda_ceteta	Eq. C9.A12.6-22	lambda_ccteta =	1,08	
Elancement limite lambda_cepteta	Eq. C9.A12.6-23	lambda_cepteta =	1,12	
Coeff. de réduction khi_teta	Eq. C9.A12.6-24+	khi_teta =	0.43	Flambement élasto-plastique
Contrainte critique	Eq. C9.A12.6-27	sigma_tetaRk =	113,46	MPa
Pres. ext./ Dépression P_max		$\mathbf{P}_{-\mathbf{max}} =$	2,37	MPa
Coefficient d'interaction	Eq. C9.A128.3-2	k_teta =	1,57	

Page 4 13/02/15

Colonne 1º partie : Jupe

Contrainte critique de voilement par cisaillement

$$\frac{R}{e_u} \le 0.16 \left(\frac{E}{R_{pt}}\right)^{\frac{2}{2}}$$
 Eq. C9.A12.7-1 47.88 > 13.70

La vérification du voilement sous l'effet du cisaillement est nécessaire

Paramètre omega_tau	Eq. C9.A12.7-4	omega_tau =	27,10	
Coefficient C_tau	C9.A12.7-5+	C_tau =	1,00	
Contrainte théorique de voilement	C9.A12.7_8	Tau_xtetaRcr =	631,97	MPa
Facteur alpha_tau (Tolérances)	§ C9-A12.7 e)	alpha_tau =	0,50	
Elancement limite lambda_cc0tau	Eq. C9.A12.6-19	lambda_cc0tau =	0.40	
Facteur dom.plast. beta_tau	Eq. C9.A12.6-20	beta_tau =	0,60	
Exposant d'interaction neta_tau	Eq. C9.A12.6-21	neta_tau =	1,00	
Elancement reduit lambda_cctau	Eq. C9.A12.7-15	lambda_cetau =	0,49	
Elancement limite lambda_ccptau	Eq. C9.A12,7-16	lambda_ccptau =	1,12	
Coeff. de réduction khi_tau	Eq. C9.A12.7-17+	khi_tau =	0,92	Flambement élasto-plastique
Contrainte critique	Eq. C9.A12.7-20	tau_xtetaRk =	122,31	MPa
Effort tranchant Q_max		Q_max =	4,71E+06	N
Coefficient d'interaction	Eq. C9.A128.3-3	k_tau =	1,94	
Coefficient d'interaction	Eq. C9.A12-8.3-4	<u>k_i</u> =	0,15	

Page 1 13/02/15

Colonne 2º partie : colonne

211			-1	٠.	
Si	iTu	ta	Œ	ю	n

Pression d'étude	Pétude =	3,9	0 MPa	
Température d'étude	Tétude =	20,0	00 °C	
Matériau	NF E	N 10028-2 200	2 P295GH	
Limite d'élasticité	Rpt_i =	295,0	0 MPa	
Module d'élasticité	E i-	198 500,0	0 MPa	
Coefficient de Poisson	mu =	0,3	0	
Caractéristiques géométriques du composant		Cylinda	re	
Diamètre intérieur	di i=	1 500,0	0 mm	
Epaisseur	e i -	33,0	o mm	
Longueur	1_i =	29 535,0	0 mm	
Rayon moyen	rm_i =	783,0	0 mm	
Conditions aux limites du composant		Direction	Direction	
12-22-24-4-2-4-11-1-2-4-2-4-1-1-1-1-1-1-		radiale	méridienn	
Extrémité I		Appuyé	Appuye	
Extrémité 2		Appuyé	Appuyé	
Imperfections de fabrication				
Référentiel de construction		CODAP 200	15	
Diamètre maximum mesuré		**	mmi	
Diamètre minimum mesuré		**	mm	
Ovalisation		0.015		
Classe de tolérance relative à l'ovalisation		C		
Ecarts de forme				
Dir. longitudinale hors zones soudées		6	13103	
Dir. longitudinale zones soudées			mm	
Dir. circonférentielle hors zones soudés			mm	
Dir. circonférentielle zones soudées			1000	
Classe de tolérance relative aux écarts de forme		C	Val. max. Ec	art : 4,00
Ecart d'alignement des fibres movennes		2.60	mm	0.1242
Ecart d'alignement des fibres moyennes / e_i		0.1625	(2000)	
Classe de tolérance relative aux écarts d'alignement		В		
Classe de tolérance globale				
Classe de tolérance globale		C		

Page 2 13/02/15

Colonne 2° partie : colonne

Contrainte critique de voilement longitudinale

 $\frac{R}{e_{\rm tr}} \le 0.03 \frac{E}{R_{\rm pt}}$ Eq. C9.A12.5-1 47.88 > 23.77

La vérification du voilement sous l'effet des contraintres de compresion longitudinales est nécessaire

Parametre omega_x	Eq. C9.A12.5-5	omega_x =	27,10	
Coefficient C_xb	Tab, C9.A12.5	$C_xb =$	6,00	
Coefficient C_x	§ C9.A12.5 c)	C_x =	1,00	
Contrainte théorique de voilement	Eq. C9.A12.5-12	sigma_xRcr =	2 642,10	MPa
Paramètre Q (Tolérances)	§ C9.A12.5 e)	Q =	16,00	
Ampl. d'imperfection delta_wk	Eq. C9.A12.5-16	delta_wk =	6,92	
Facteur d'imperfection alpha_x	Eq. C9.A12.5-17	$alpha_x =$	0,39	
Elancement limite lambda_cc0x	Eq. C9.A12.5-18	lambda_ec0x =	0,20	
Facteur dom.plast, beta_x	Eq. C9.A12.5-19	beta_x =	0.60	
Exposant d'interaction neta_x	Eq. C9.A12.5-20	$neta_x =$	1,00	
Elancement réduit lambda_ccx	Eq. C9.A12.5-21	lambda_ccx =	0,32	
Elancement limite lambda_ccpx	Eq. C9.A12.5-22	neta_x =	0,99	
Coeff. de réduction khi_x	Eq. C9.A12.5-23+	khi_x =	0.91	Flambement élasto-plastique
Contrainte critique	Eq. C9.A12.5-26	sigma_xRk =	241,61	MPa
Force F_cmax	Eq. C9.A12.5-27	F_cmax =	1,86E+07	N
Moment M_max	Eq. C9.A12.5-28	$M_{\perp}max =$	7,12E+09	N.mm
Coefficient d'interaction	Eq. C9.A128.3-1	k_x =	1,93	

Page 3 13/02/15

Colonne 2° partie : colonne

Contrainte critique de voilement circonférentiel

$$\frac{R}{e_u} \le 0.21 \sqrt{\frac{E}{R_{pt}}}$$
 Eq. C9.A12.6-1 47.88 > 5.91

La vérification du voilement sous l'effet des contraintres de compresion circonférentielles est nécessaire

Paramètre omega_teta	Eq. C9.A12.6-4	omega_teta =	27,10	
Coefficient C_teta	Tab. C9.A12.6-1	C_teta =	1,50	
Coefficient C_tetas	Tab. C9.A12.6-2	C_tetas =	1,51	
Contrainte théorique de voilement	§ C9.A12.6 d)	sigma_tetaRcr =	225,37	MPa
Facteur alpha_teta_(Tolérances)	§ C9.A12.6 e)	alpha_teta =	0,50	
Elancement limite lambda_cc0teta	Eq. C9.A12.6-19	lambda_cc0teta =	0.40	
Facteur dom.plast. beta_teta	Eq. C9.A12.6-20	$beta_teta =$	0,60	
Exposant d'interaction neta_teta	Eq. C9.A12.6-21	neta_teta =	1,00	
Elancement réduit lambda_ceteta	Eq. C9.A12.6-22	lambda_ccteta =	1,08	
Elancement limite lambda_cepteta	Eq. C9.A12.6-23	lambda_ccpteta =	1,12	
Coeff. de réduction khi_teta	Eq. C9.A12.6-24+	khi_teta =	0,43	Flambement élasto-plastique
Contrainte critique	Eq. C9.A12.6-27	sigma_tetaRk =	113,46	MPa
Pres. ext./ Dépression P_max		P_max =	2,37	MPa
Coefficient d'interaction	Eq. C9.A128.3-2	k_teta =	1,57	

Page 4 13/02/15

Colonne 2º partie : colonne

Contrainte critique de voilement par cisaillement

$$\frac{R}{e_u} \le 0.16 \left(\frac{E}{R_{pe}}\right)^{\frac{2}{\beta}}$$
 Eq. C9.A12.7-1 47.88 > 13.70

La vérification du voilement sous l'effet du cisaillement est nécessaire

Paramètre omega_tau	Eq. C9.A12.7-4	omega_tau=	27,10	
Coefficient C_tau	C9.A12.7-5+	C_tau =	1,00	
Contrainte théorique de voilement	C9.A12.7_8	Tau_xtetaRcr =	631,97	MPa
Facteur alpha_tau (Tolérances)	§ C9.A12.7 e)	alpha_tau=	0,50	
Elancement limite lambda_cc0tau	Eq. C9.A12.6-19	lambda_cc0tau =	0,40	
Facteur dom.plast. beta_tau	Eq. C9.A12.6-20	beta_tau =	0,60	
Exposant d'interaction neta_tau	Eq. C9.A12.6-21	neta_tau =	1,00	
Elancement réduit lambda_cetau	Eq. C9.A12.7-15	lambda_cctau =	0,49	
Elancement limite lambda_ccptau	Eq. C9.A12.7-16	lambda_ceptau =	1,12	
Coeff. de réduction khi_tau	Eq. C9.A12.7-17+	khi_tau=	0,92	Flambement élasto-plastique
Contrainte critique	Eq. C9.A12.7-20	tau_xtetaRk =	122,31	MPa
Effort tranchant Q_max		Q_max =	4,71E+06	N
Coefficient d'interaction	Eq. C9.A128.3-3	k_tau =	1,94	
Coefficient d'interaction	Eq. C9.A12-8.3-4	k_i =	0,02	

ANNEXE 3 RESERVOIRS HORIZONTAUX SUR DEUX BERCEAUX

1° PARTIE ESTIMATION DE LA REPONSE SISMIQUE A PARTIR DE CALCULS ANALYTIQUES (Procédure 1)

Figure A3/1-1 & Figure A3/1-2 : Schéma de l'équipement et notations

Figure A3/1-3: Notations

Figure A3/1-4 : Détermination de l'accélération maximum admissible par les ancrages

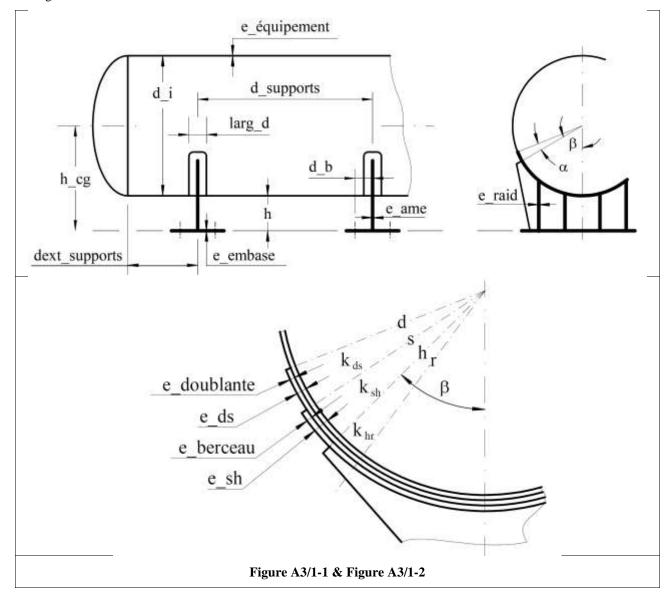

Figure A3/1-5 : Comportement du réservoir dans les directions transversale et verticale

Figure A3/1-6 : Comportement l'échangeur dans les directions transversale et verticale

Figure A3/1-7 : Comportement de l'équipement dans la direction longitudinale

Figure A3/1-8 : Vérification de la résistance du support fixe

Figure A3/1-9: Contraintes circonférentielles maximales en tête de berceaux

Notations

Cis_ancrage	=	Effort de cisaillement admissible par un ancrage Note : il s'agit ici de la résistance de la tige (crosse) d'ancrage uniquement. La résistance du béton
		« correspondant » doit, par ailleurs, être évaluée par l'intervenant.
d_supports	=	Distance entre les supports
dext_supports	=	Distance entre l'extrémité de la partie cylindrique de l'équipement et le premier support
d_e	=	Diamètre extérieur de l'équipement
d_i	=	Diamètre intérieur de l'équipement
r_i		Rayon intérieur de l'équipement
dist_ancrages	=	Distance entre les ancrages les plus éloignés d'une même embase
e_ame	=	Épaisseur de l'âme des berceaux
e_berceau	=	Épaisseur de la tôle du berceau
e_embase	=	Épaisseur de l'embase
e_équipement	=	Épaisseur de la paroi de l'équipement
e_gorge	=	Gorge de la soudure de l'embase et de l'âme du support
e_raid	=	Épaisseur des renforts de l'âme du berceau
e_ref		Épaisseur e référence pour la détermination des coefficients kr
E_supports	=	Module d'élasticité du matériau des supports
f_soudure	=	Limite admissible du matériau de la soudure
f_enveloppe	=	Contrainte de membrane admissible du matériau de la paroi de l'appareil
$g_{xy} g_{yy} g_z$	=	Accélérations sismiques dans les directions longitudinale, transversale et verticale respectivement
G_supports	=	Module de cisaillement du matériau des supports
h	=	Hauteur au droit de la génératrice inférieure de l'enveloppe du réservoir
h_cg	=	Altitude du centre de gravité de l'ensemble équipement + fluide
Iyy_supports	=	Moment d'inertie de la section droite du support au droit de la génératrice inférieure de l'équipement
l_équipement	=	Longueur totale de l'équipement

Figure A3/1-3

Notations (suite)

n_ancrages	=	Nombre de boulons d'ancrage par file (1 ou 2)
n_files	=	Nombre de files de boulons d'ancrage (2 ou 3)
0 0	0	3 files & 2 ancrages par file
0	0	2 files & 2 ancrages par file
·	٠	2 files & 1 ancrage par file
n_supports	=	Nombre de supports
nu_supports	=	Coefficient de Poisson du matériau des supports
Pds	=	Poids de l'équipement (équipement + fluide)
Q	=	Réaction au droit d'un support
Rp_ancrage	=	Limite d'élasticité du matériau des ancrages
Rp_embase	=	Limite d'élasticité du matériau de l'embase
Rp_enveloppe	=	Limite d'élasticité du matériau de la paroi de l'appareil
Rp_soudure	=	Limite d'élasticité du matériau de la soudure
S_supports	=	Surface de la section droite du support au droit de la génératrice inférieure de l'équipement
T_ancrage	=	Effort d'arrachement admissible par un ancrage

Figure A3/1-3 (suite)

Détermination de l'accélération maximum admissible par les ancrages

Facteur de réduction de la résistance à la flexion de l'embase	$R_embase = \frac{Rp_embase e_embase^2}{3 T_ancrage}$
Facteur de réduction de la résistance de la soudure de l'embase	$R_soudure = \frac{2 \ e_soudure \ d_b \ f_soudure}{T_ancrage}$
Effort d'arrachement admissible réduit	$Tr_ancrage = T_ancrage MIN(R_soudure; R_embase)$

$$alpha = \frac{Tr_ancrage}{Cis_ancrage}$$

$$F1 = \sqrt{n_supports^2 + 1}$$

$$F2 = \sqrt{n_files^2 \left(\frac{h_cg}{dist_ancrages}\right)^2 + \left(\frac{2}{3}\right)^2 + \left(\frac{h_cg}{d_supports}\right)^2 \left(\frac{n_supports^2}{(n_supports - 1)^2}\right)}$$

$$W_b = \frac{Pds}{n_supports \ n_files \ n_ancrages}$$

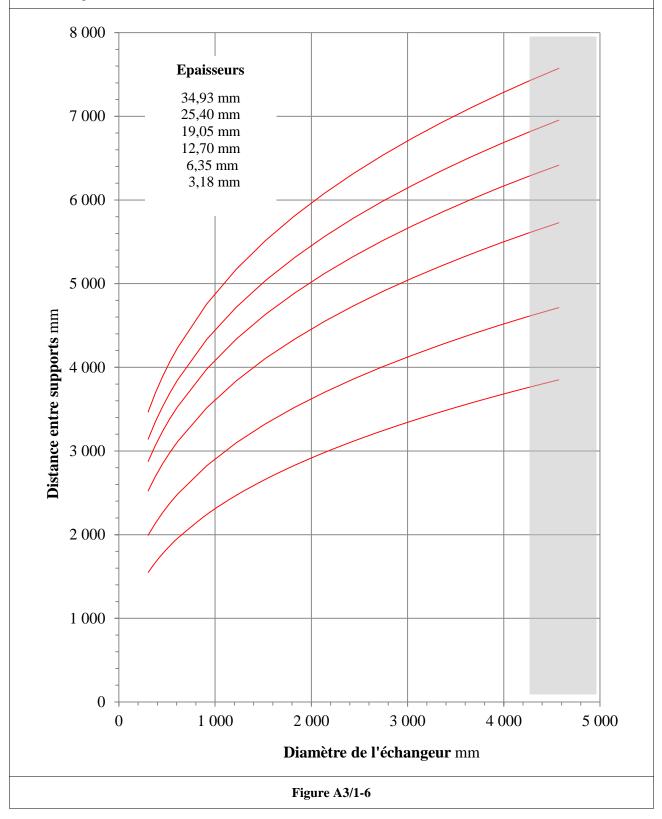
$$lambda1 = \frac{Cis_ancrage}{W_b} \quad \frac{1}{F1}$$

$$lambda2 = \frac{\frac{Cis_ancrage}{W_b} + \frac{0.7}{alpha}}{\frac{0.7}{alpha} F2 + F1}$$


Accélération maximum admissible par les ancrages

lambda = MIN(lambda1; lambda2)

Figure A3/1-4


Comportement du réservoir dans les directions transversales et verticales

Le graphique ci-après permet de déterminer, en fonction du diamètre du **réservoir**, l'espacement maximal entre supports en-deçà duquel le réservoir aura un comportement « rigide » ou, au contraire, au-delà duquel le réservoir aura un comportement « flexible ».

Comportement de l'échangeur dans les directions transversale et verticale

Le graphique ci-après permet de déterminer, en fonction du diamètre de **l'échangeur**, l'espacement maximal entre supports en-deçà duquel l'échangeur aura un comportement « rigide » ou, au contraire, au-delà duquel l'échangeur aura un comportement « flexible ».

Comportement de l'équipement dans la direction longitudinale

Raideur du support dans la direction longitudinale	$k_supports = \frac{1}{\frac{h^3}{3 \ E_supports \ Iyy_supports} + \frac{h}{S_supports \ G_supports}}$
Fréquence fondamentale dans la direction longitudinale	$Fr\'{e}quence_longi = \frac{1}{2 \pi} \sqrt{\frac{k_supports \ g}{Pds}}$ Si la fr\'{e}quence ainsi déterminée est \geq à 33 Hz (Note) alors l'équipement aura un comportement « rigide » dans la direction longitudinale, « flexible » dans le cas
	contraire. Note : Cette valeur peut être réduite à la valeur de la fréquence au-delà de laquelle il n'y a aucune amplification dynamique significative. Figure A3/1-7

Évaluation du comportement sismique des ancrages de l'équipement

Si l'équipement peut être considéré comme ayant un comportement « rigide » dans les trois directions, les ancrages seront acceptables si l'accélération maximale définie par le spectre horizontal à la fréquence de 33 Hz est inférieure ou égale à l'accélération maximum *lambda* admissible par l'équipement.

Si l'équipement doit être considéré comme ayant un comportement « flexible » dans les directions transversales et verticale, les ancrages seront acceptables si l'accélération maximale définie par le spectre horizontal (ou par le spectre vertical si cette valeur est supérieure) est inférieure ou égale à l'accélération maximum *lambda* admissible par l'équipement.

Si l'équipement doit être considéré comme ayant un comportement « flexible » dans la direction longitudinale et rigide dans les deux autres directions, les ancrages seront acceptables si l'accélération maximale définie par le spectre horizontal à est inférieure ou égale à l'accélération maximum *lambda* admissible par l'équipement.

Si l'équipement peut être considéré comme ayant un comportement « flexible » dans les trois directions, les ancrages seront acceptables si les accélérations maximales définies par le spectre horizontal et le spectre vertical sont inférieures ou égales à l'accélération maximum *lambda* admissible par l'équipement.

Cette évaluation du comportement général de l'équipement et cette vérification des ancrages doivent être complétées par la vérification des supports (Note), notamment du support fixe et par la vérification des contraintes maximum en tête de berceau présentée ci-après.

Note: Cette vérification peut être réalisée simplement conformément aux procédures 4-10 & 4-11 de la référence [95b].

Vérification de la résistance du support fixe

Effort longitudinal admissible par le berceau	$F_{\text{Lbmax}} \leq \frac{C_raid Rp_ancrage I_{yy}}{h + d_{e} \left(0.5 - \frac{\sin\left(\beta\right)}{2\beta}\right)}$
	C_raid = 1 pour des raidisseurs obtenus par pliage
	C_raid = 0,6 pour des raidisseurs soudés
Effort longitudinal appliqué au berceau	$F_{\mathrm{Lb}} = Pds$ Lambda
	$F_{\mathrm{Lb}} \leq F_{\mathrm{Lbmax}}$

Figure A3/1-8

Contraintes circonférentielles maximales en tête de berceaux

Détermination des coefficients k_{ϕ} (effet de l'angle de supportage), k_a (effet de la distance entre l'extrémité de l'équipement et le premier support), k_c (effet de la distance entre les supports) à partir des graphiques Figures A3/2-10 à A3/2-14 et du coefficient k_s (effet de l'éventuelle tôle de berceau et de l'éventuelle doublante) à partir de la procédure ci-après.

$$k_{\rm s} = k_{\rm ss} k_{\rm sr}$$

Calcul de kss

Ce facteur permet de prendre en compte l'influence de la flexibilité du support. De manière conservative le support peut être considéré comme parfaitement rigide et dans ce cas $k_{ss} = 1$. Dans le cas contraire la procédure pour déterminer k_{ss} est la suivante :

$$k_{\rm ss} = k_{\rm hr} \frac{k_{\rm 0r}}{k_{\rm 0h}}$$
 avec:

 $k_{\phi r}$ et $k_{\phi h}$ coefficients k_{ϕ} respectivement pour les sections r et h Voir Figure A3/1-2

 $k_{\rm hr}$ coefficient $k_{\rm r}$ (Figures A3/2-15 à A3/2-27) pour la section hr Voir Figure A3/1-2

Calcul de ksr

Ce facteur permet de prendre en compte l'influence de l'éventuelle tôle du berceau et de l'éventuelle doublante. Il doit être déterminé conformément à la procédure suivante :

$$k_{\rm sr} = k_{\rm ds} k_{\rm sh}^2 k_{\rm hr} \frac{k_{\rm \emptyset r}}{k_{\rm \emptyset s}}$$

 $k_{\phi s}$ coefficient k_{ϕ} pour la section s Voir Figure A3/1-2

 $k_{\rm ds}$ coefficient $k_{\rm r}$ (Figures A3/2-15 à A3/2-26) pour la section ds Voir Figure A3/1-2

avec e_ref =e_ds

 $k_{\rm sh}$ coefficient $k_{\rm r}$ (Figures A3/2-15 à A3/2-26) pour la section sh Voir Figure A3/1-2

avec e_ref =e_sh

 $k_{\rm g} = 3 \text{ voir aussi } [100]$

Figure A3/1-9

Détermination et évaluation des contraintes circonférentielles maximales en tête de berceaux

Défaillance par déformation excessive

$$\sigma_{\emptyset} = k_{\emptyset} k_{a} k_{c} k_{s} \left(-1 + \frac{h_{c}g}{d_{supports}} g_{x} + k_{g} g_{y} + g_{z}\right) \frac{Q}{e_{e}(quipement)^{2}} \sqrt{\frac{2 e_{e}(quipement)}{d_{e}(quipement)}}$$

Cette contrainte doit être combinée à la contrainte due à la pression de service et évaluée dans le cas du spectre réduit par rapport 1,5 fois la contrainte circonférentielle totale (membrane + flexion) admissible pour une situation normale de service ou dans le cas du spectre de base par rapport à 1,5 fois la contrainte circonférentielle totale (membrane + flexion) admissible pour une situation de service exceptionnelle.

Défaillance par instabilité élastique ou élastoplastique

$$\sigma_{\emptyset} = k_{\emptyset} \ k_{a} k_{c} k_{s} \left(-1 - \frac{h_{c} g}{d_{s} upports} g_{x} - k_{g} g_{y} - g_{z}\right) \frac{Q}{e_{e} (quipement)^{2}} \sqrt{\frac{2 \ e_{e} (quipement)^{2}}{d_{i} i}}$$

Cette contrainte doit être combinée à la contrainte due à la dépression éventuelle et évaluée à partir du spectre de base par rapport à la contrainte de compression admissible déterminée à partir de la méthodologie définie par les références [167], [163], [180].

Figure A3/1-9 (suite)

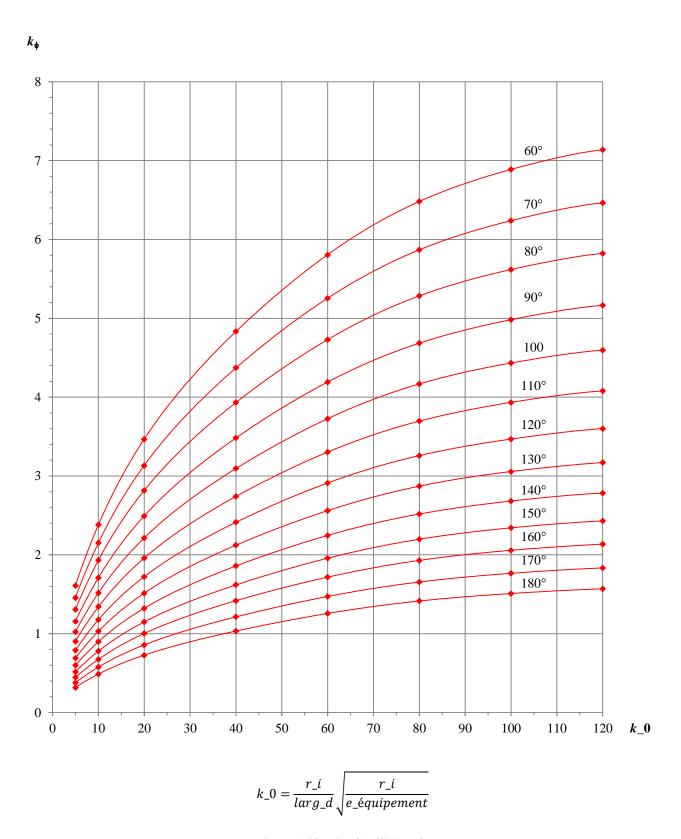


Figure A3/1-10 : Coefficient k_{ϕ}

 $k_{\rm a}$

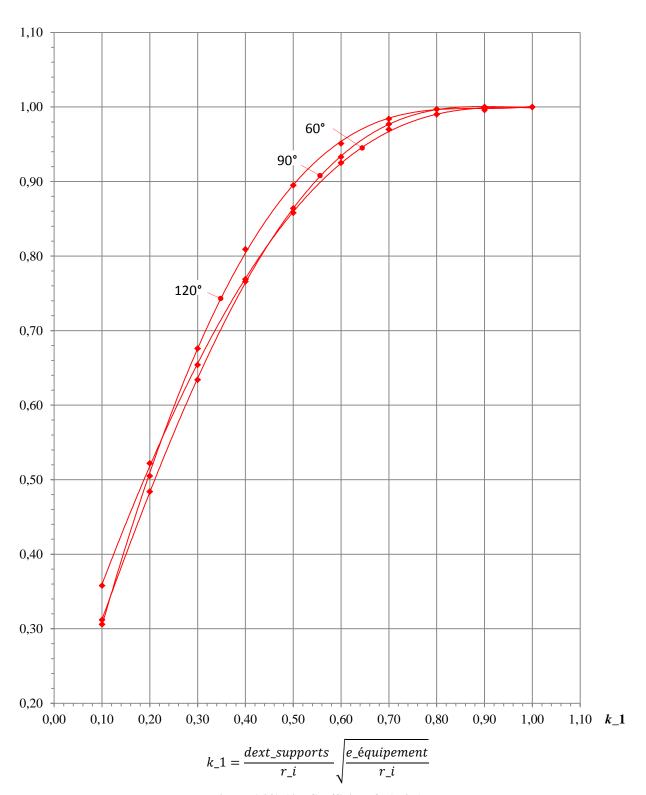


Figure A3/1-12 : Coefficient $k_{\rm a}$ (suite)

 $k_{\rm a}$

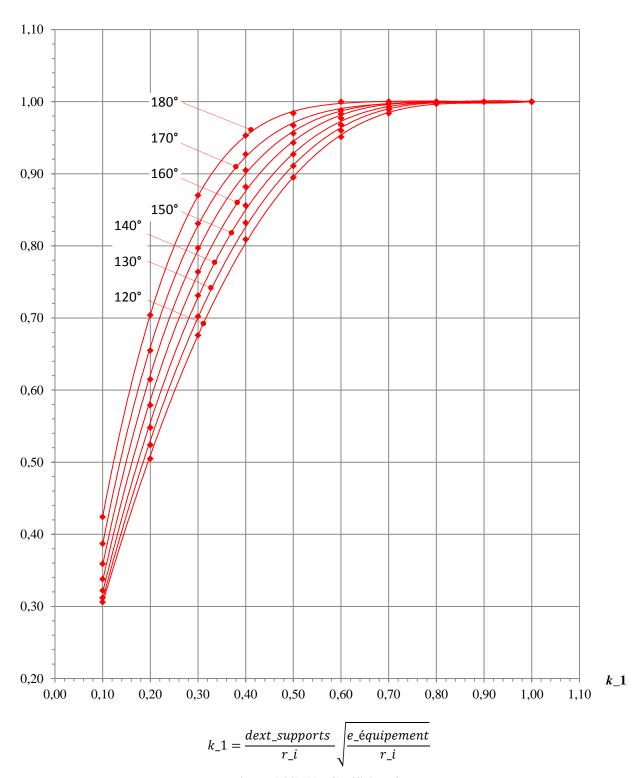


Figure A3/1-11 : Coefficient k_a

 $k_{\rm c}$

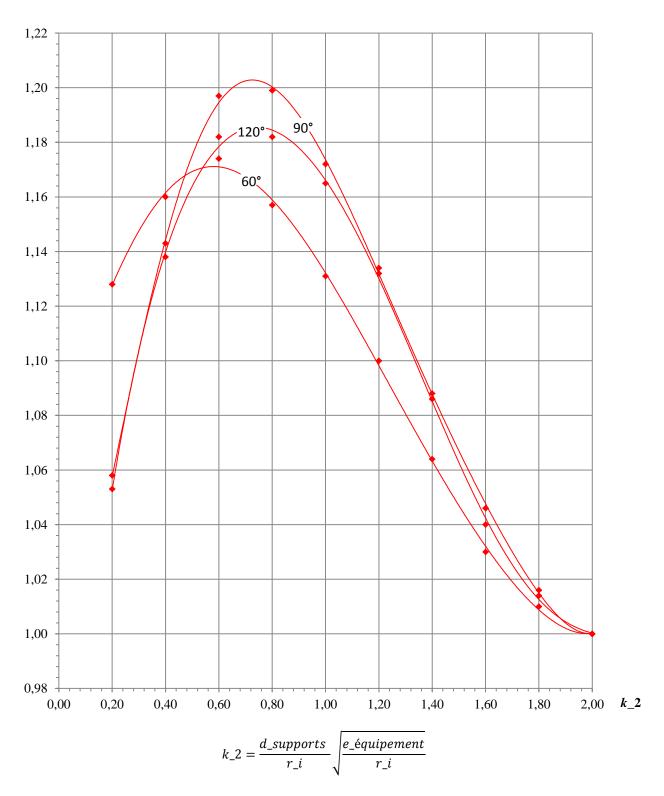


Figure A3/1-14 : Coefficient k_c (suite)

 $k_{\rm c}$

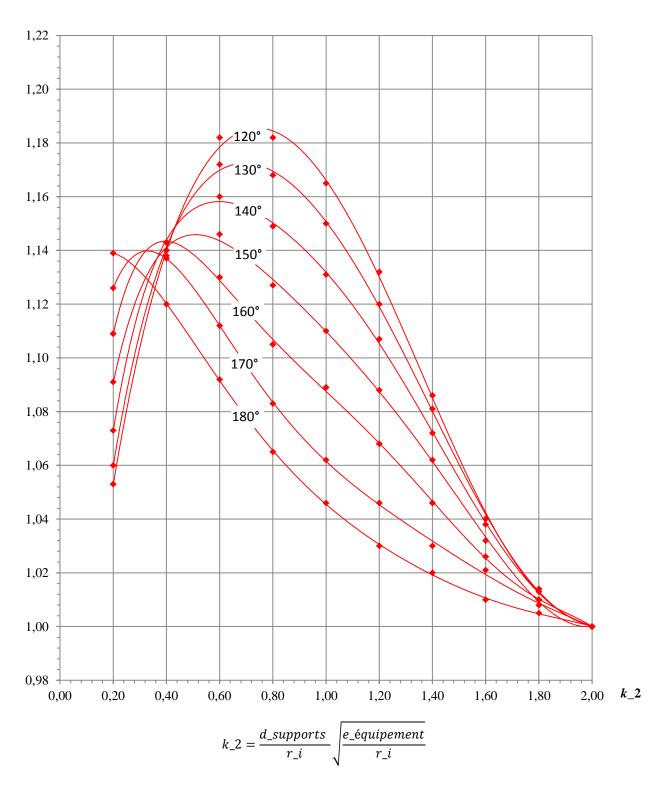


Figure A3/1-13 : Coefficient k_c

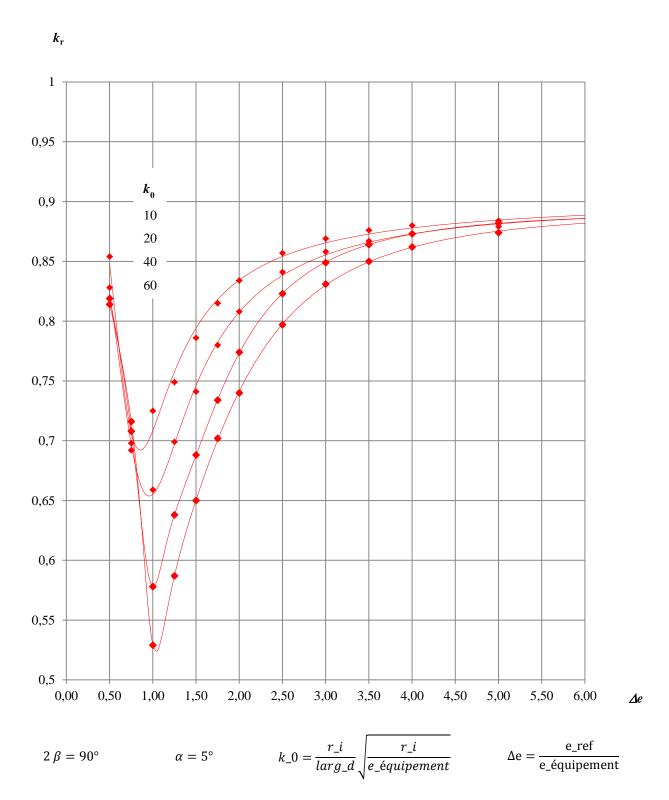


Figure A3/1-15 : Coefficient $k_{\rm r}$

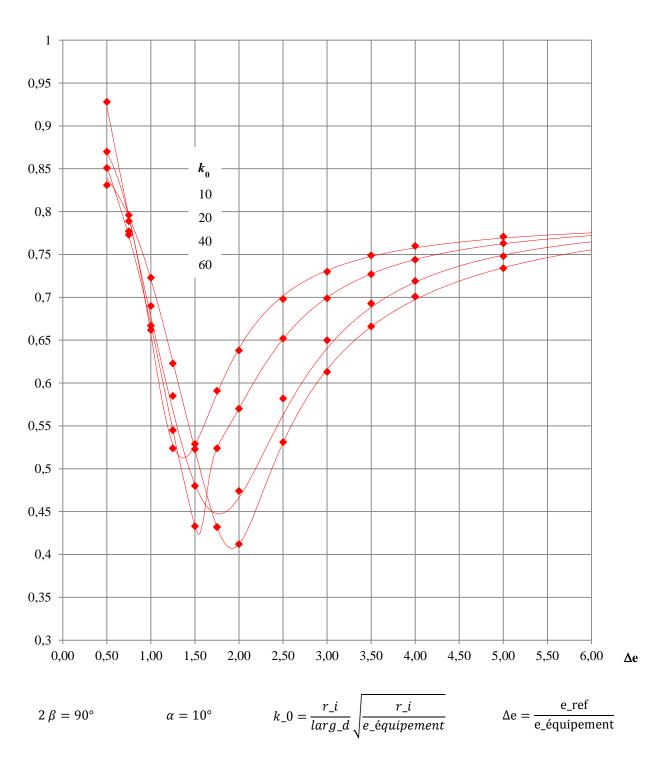


Figure A3/1-16 : Coefficient $k_{\rm r}$

 $k_{\rm r}$

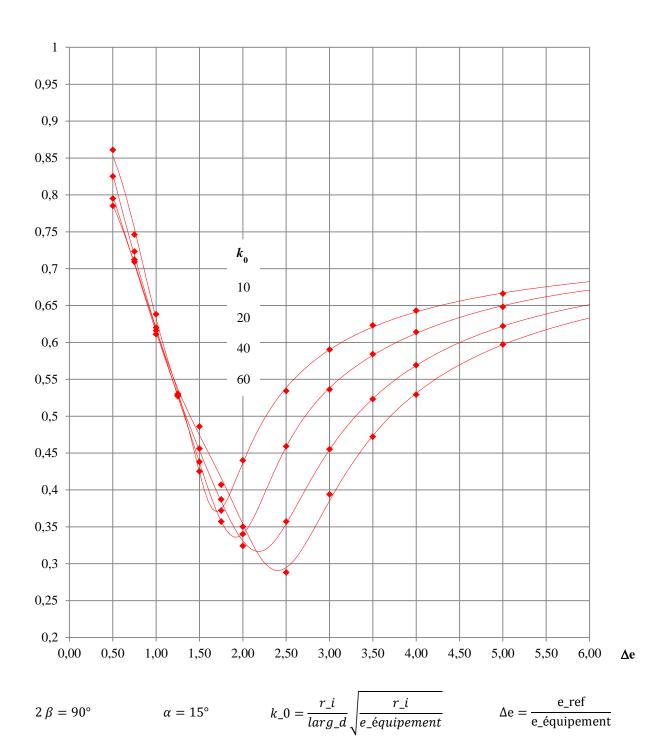


Figure A3/1-17 : Coefficient k_r

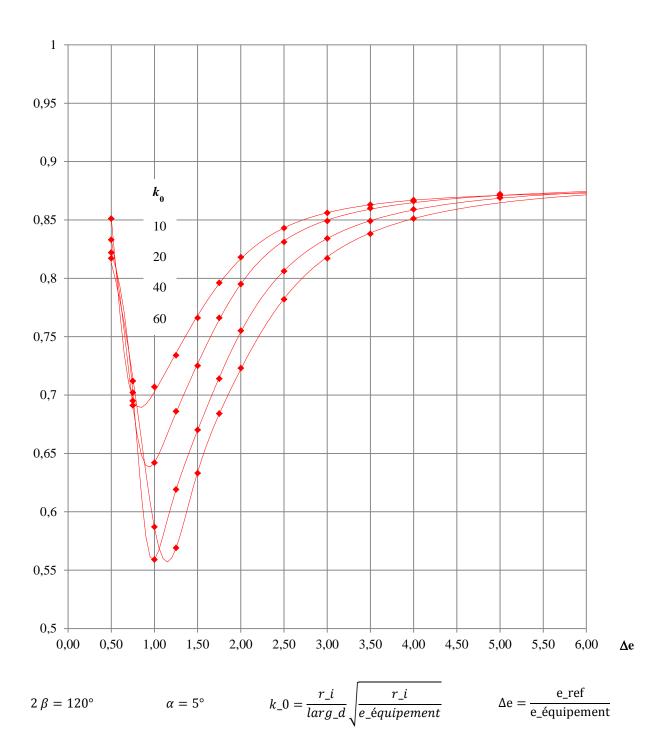


Figure A3/1-18 : Coefficient $k_{\rm r}$

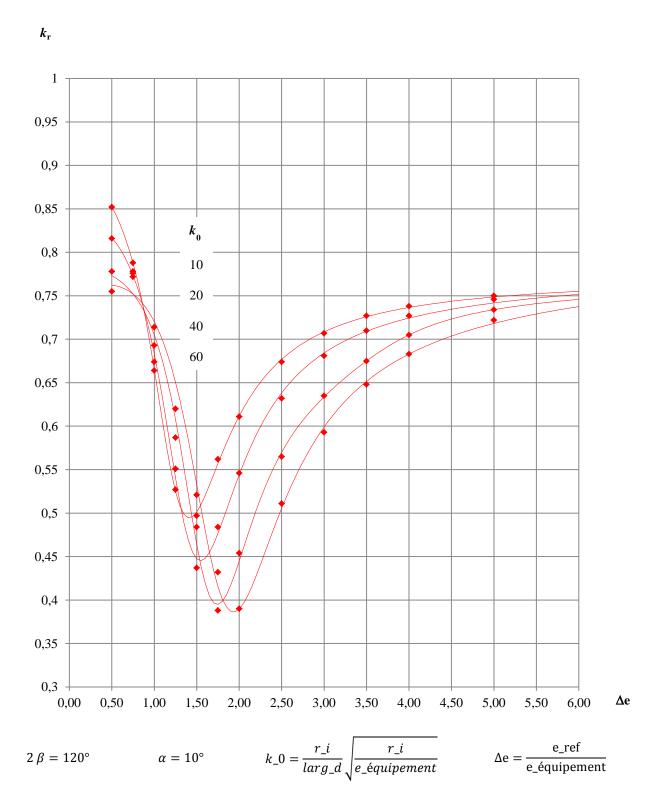
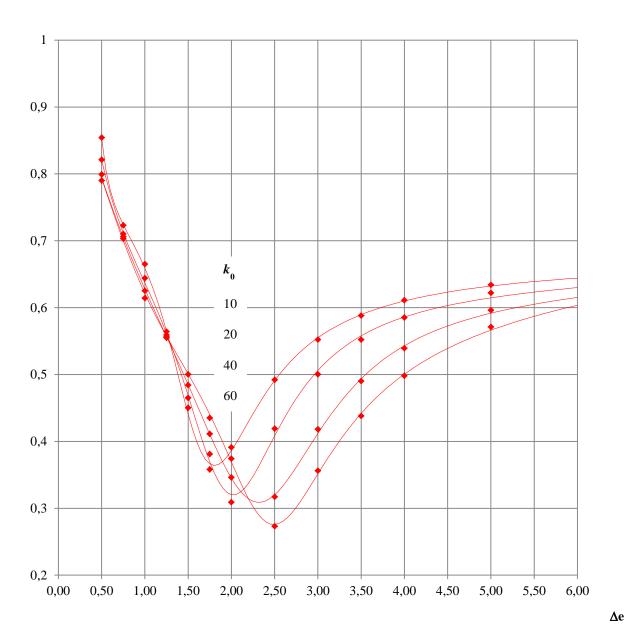



Figure A3/1-19 : Coefficient $k_{\rm r}$

 $k_{\rm r}$

$$2 \ \beta = 120^{\circ} \qquad \qquad \alpha = 15^{\circ} \qquad \qquad k_0 = \frac{r_i}{larg_d} \sqrt{\frac{r_i}{e_\'equipement}} \qquad \qquad \Delta e = \frac{e_ref}{e_\'equipement}$$

Figure A3/1-20 : Coefficient $k_{\rm r}$

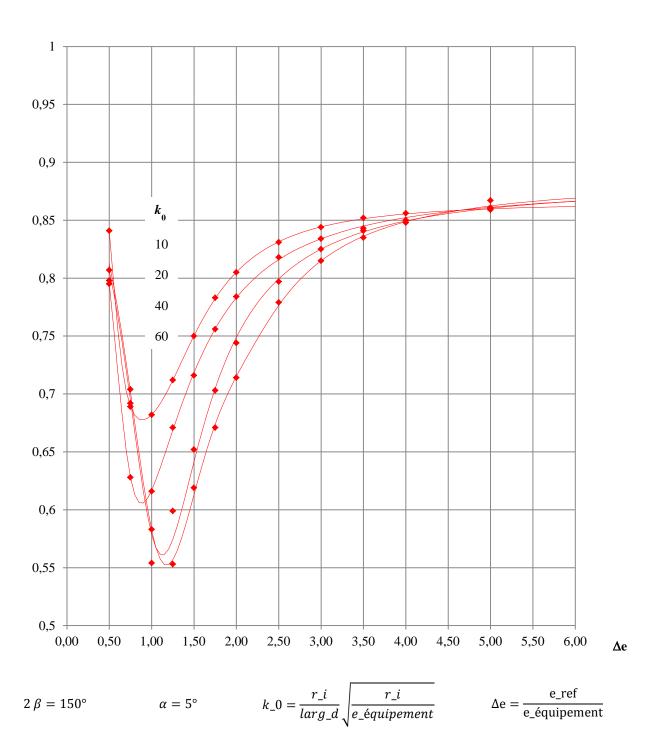


Figure A3/1-21 : Coefficient $k_{\rm r}$

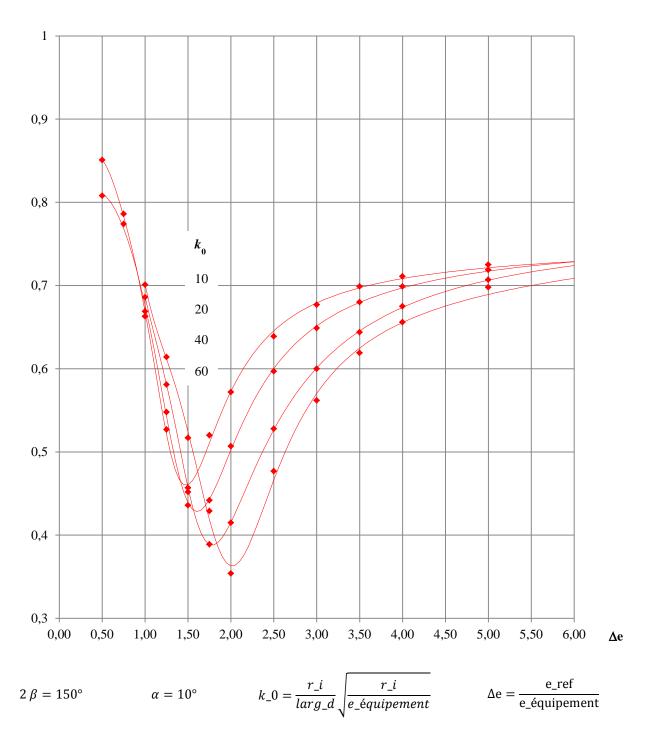


Figure A3/1-22 : Coefficient $k_{\rm r}$

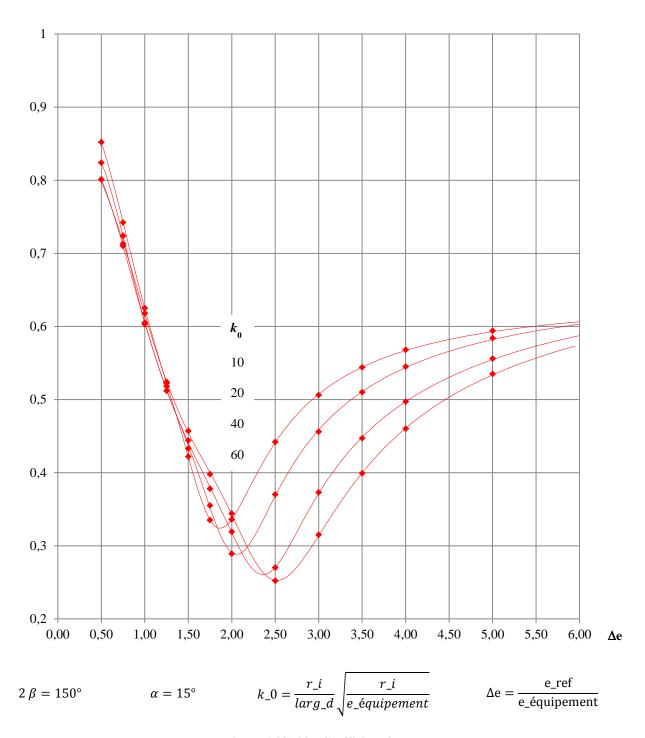


Figure A3/1-23 : Coefficient $k_{\rm r}$

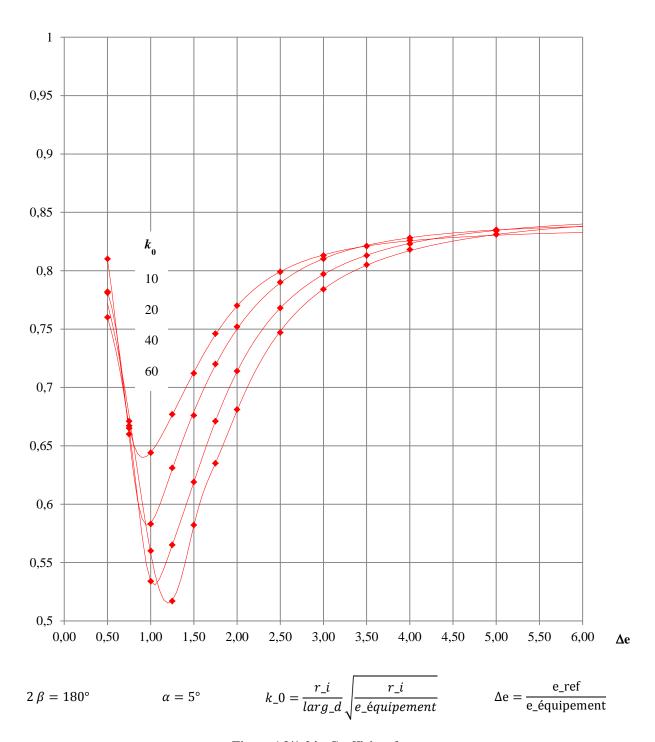


Figure A3/1-24 : Coefficient $k_{\rm r}$

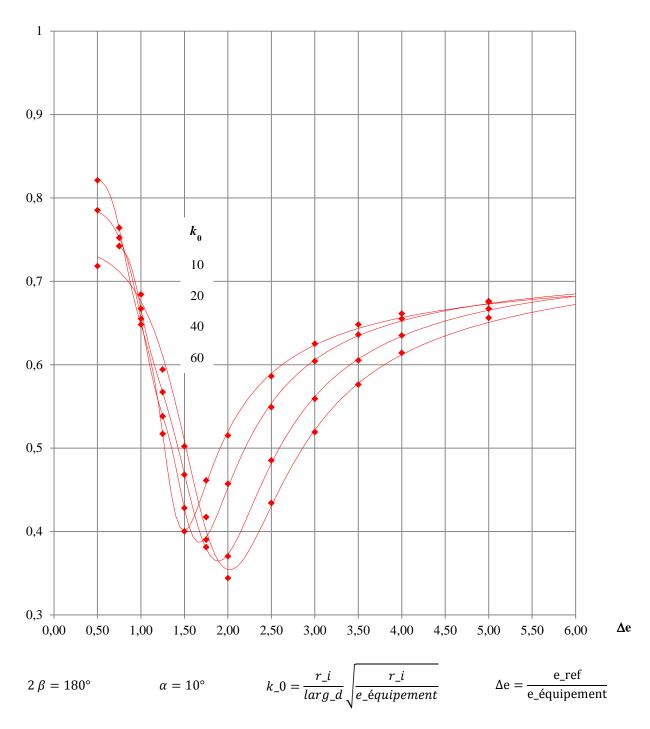


Figure A3/1-25 : Coefficient $k_{\rm r}$

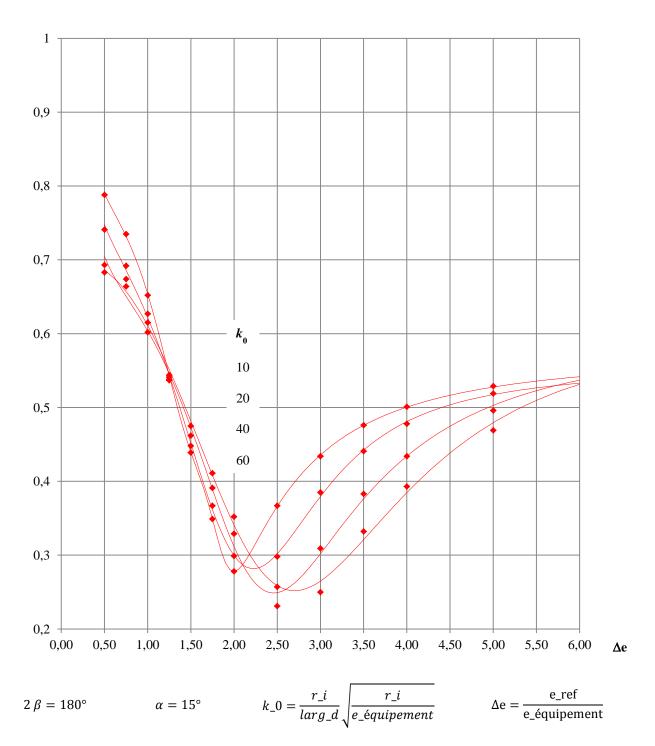
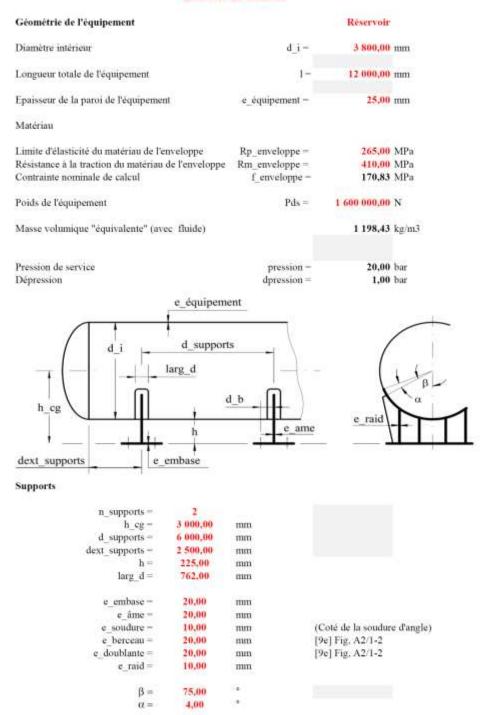


Figure A3/1-26 : Coefficient $k_{\rm r}$


DT 114 - Guide Équipements chaudronnés & machines tournantes destinés aux procédés industriels

ANNEXE 3 RESERVOIRS HORIZONTAUX SUR DEUX BERCEAUX 2° PARTIE EXEMPLE (Procédure 1)

Page 1 18/02/15

Réservoir sur berceaux

Page 2 18/02/15

Réservoir sur berceaux

Matériaux	des su	p	ports
-----------	--------	---	-------

Module d'élasticité du matériau des supports	$E_supports =$	210 000,00	MPa	
Coefficient de Poison du matériau des supports Module de cisaillement du matériau des supports	nu_supports = G_supports =	0,3 80 769,23	MPa	
Limite d'élasticité du matériau des herceaux	Rp āme =	265,00	MPa	
9504 833 82388 906 9		555555	(2)(2)	
Limite d'élasticité du matériau des ancrages	Rp_ancrage =	265,00	MPa	
Ancrages	d_b =	100,00	mm	
Nombre de "files" d'ancrages	n_ligne =	2		[9e] Fig, A2/1-3
Nombre d'ancrages par "file"	n_ancrages =	2		[9e] Fig. A2/1-3
Distance entre les ancrages les plus éloignés	dist_ancrages -	3 285,00	mm	
Diamètre des tiges d'ancrage	d_ancrage =	28,00	mm	
Effort d'arrachement admissible dans une tige d'a	ncr. T_ancrage =	163 174,32	N	
Cisaillement admissible dans une tige d'ancrage	Cis_ancrage =	97 904,59	N	
Critères d'application de la procédure	h_cg/d_supports =	0,50	U - L1	
	h_cg/dist_ancrages =	océdure est app 0,91	ncable	
		océdure est app	olicable	
Facteur de réduction de la résistance				
de l'embase	R_embase =	0,22		[9e] Fig. A2/1-4
Facteur de réduction de la résistance				
de la soudure de l'embase	R_soudure =	4,59		[9e] Fig. A2/1-4
Effort de traction admissible "réduit"				
dans une tige d'ancrage	Tr_ancrage =	35 333,33	N	[9e] Fig, A2/1-4
Cisaillement admissible				
dans une tige d'ancrage	Cisr_ancrage =	97 904,59	N	[9e] Fig. A2/1-4
	alpha =	0.36		[9e] Fig, A2/1-4
	$\mathbf{W}_\mathbf{b} =$	200 000,00		[9e] Fig. A2/1-4
	F1 =	2,24		[9e] Fig. A2/1-4
	F2 =	2,19		[9e] Fig. A2/1-4
Accélération admissible par les ancrages	=	0,22	g	[9e] Fig, A2/1-4
	=	2,15	m/s2	

Page 3 25/02/15

Réservoir sur berceaux

Comportement of	e l'équ	ipement da	ns les dire	ctions vert	icale et	transversale
-----------------	---------	------------	-------------	-------------	----------	--------------

Distance maximale entre supports pour que l'équipement puisse être considéré comme "rigide"

d_rigide = 9 136,31

[9e] Fig. A2/1-5

L'équipement peut être considéré comme 'rigide' dans les directions verticale et transversale

Comportement de l'équipement dans la direction longitidinale

[9e] Fig. A2/1-7

Moment d'inertie de la section droite du support au droit de la génératrice inférieure de l'équipement

Iyy_supports = 1,1

1,11E+08 mm4

Module d'inertie de la section droite du support au droit de la génératrice inférieure

Wyy supports - 6,97E+05

mm3

Surface de la section droite du support

au droit de la génératrice inférieure

S_supports = 8,05E+04

4 mm2

de l'équipement

de l'équipement

k support-

5,08E+06

N/mm

Fréquence dans la direction longitudinale

Raideur du support dans la direction longitudinale

f longi =

0.89

L'équipement ne peut pas être considéré comme 'rigide' dans la direction longitudinale

Page 4 25/02/15

Réservoir sur berceaux

Caractéristiques du séis	me				2		
Zone de sismicité					3		
Classe de sol					В		
Equipement		Equipement en service					
Arrêtê		A	rrêtés du 4	Octobr	e 2010 & du	13 Septembro	2013
Amortissement					5		
Coefficient de réduction	Direction	on horizontale 1			3		
Coefficient de réduction	Direction	on horizontale 2			3		
Coefficient de réduction	Direction	on verticale			1,5		
ghg_1 = 2,04		TBH = 0.0	05		TBV	7 = 0,03	
$ghg_2 = 2.04$		TCH = 0.2	25		TCV	7 = 0.20	
gvg = 1.84		TDH = 2,50			TDV	7 = 2.50	
Csol = 1,35		TEH = 5.0	00				
neta = 1,00		TFH = 10	.00				
dhg = 0.04							
Périodes Direction	horizonta	le_1		* 5			* Hz
et Direction	horizontal	le_2		* 8			* Hz
Fréquences Direction	verticale			* s			* Hz
Accelerations							
Bande de fréquences				+/-	0	96	
			Freq		Freq. =	Freq. +	
Spectre de réponse élastic	que						
Accélération sismique ho		gamma_h_1 =	2,75		2,75	2,75	m/s2
Accélération sismique ho		$gamma_h_2 =$	2,75		2,75	2,75	m/s2
Accélération sismique ve	rticale	$gamma_v =$	5,52		5,52	5,52	m/s2
Spectre de calcul pour l'a	nalyse ēla	stique					
Accélération sismique ho	rizontalı	gamma_ch_1 =	1,84		1,84	1.84	m/s2
Accélération sismique ho	rizontak	gamma_ch_2 =	1,84		1,84	1,84	m/s2
Accélération sismique ve	rticale	gamma_cv =	3,07		3,07	3,07	m/s2

Page 5 18/02/15

Réservoir sur berceaux

Ext at	luation	des	acce	erat	ions

Accélération dans la direction transversale	1,84	<=	2,15	Acceptable
Accélération dans la direction longitudinale	1,84	<=	2,15	Acceptable
Accélération dans la direction verticale	3,07	>	2,15	Non acceptable

Evaluation de la résistance du berceau fixe (C9.3.3.7.4-5)

Coefficient pour raidisseurs (0,6 : soudés - 1 : pliés) 0,60

Effort longitudinal admisible par le berceau 447 105,11 N

Effort longitudinal appliqué au berceau 299 449,54 N Acceptable

Evaluation de la contrainte de flexion

en pied de berceau au droit de la génératrice inférieure 177,48 MPa

Vérification des contraintes maximum en tête de berceau

k_0 =	24,303	[9e] Fig. A2	/1-10
k_1 =	0.135	[9e] Fig, A2	/1-11
k_2 =	0,324	[9e] Fig. A2	/1-13
k_6 =	1,271	[9e] Fig. A2	/1-10
k_a	0,433	[9e] Fig. A2	/1-11 & 12
$\mathbf{k}_{_{\mathbf{k},\mathbf{k}}}\mathbf{c}=$	1,130	[9e] Fig. A2	/1-13 & 14
$\mathbf{k}_{\mathbf{s}} =$	0,600	[9e] Fig, A2	/1-9
Q -	800 000,00	N	
sigma_phi_pds & séisme_r =	-1,77	MPa	
sigma_phi_pds & séisme_nr =	-139,41	MPa	
sigma_phi_pression =	152,00	MPa	
sigma_phi_adm_def. =	265,00	MPa	
pression+séisme-poids propre =	150,23	MPa	Acceptable
sigma_phi_adm_inst. =	-69,41	MPa	
dpression-séisme-poids propre =	-147,01	MPa	Non acceptable

GUIDE SEISME - EQUIPEMENTS CHAUDRONNES Annexe 1 : Contraintes critiques de voilement

Page 6 18/02/15

Réservoir sur berceaux - Direction circonférentielle

Situation			
Pression d'étude	Pétude =	0,00	MPa
Température d'étude	Tétude =	20,00	°C
Matériau	NF EX	N 10028-2 2002	P265GH
Limite d'élasticité	Rpt_i -	265,00	MPa
Module d'élasticité	E_i =	210 000,00	MPa
Coefficient de Poisson	nu =	0.30	
Caractéristiques géométriques du composant		Cylindre	
Diamètre intérieur	di i=	3 800,00	mm
Epaisseur	e_i =	25,00	mm
Longueur	1_i =	6 000,00	mm
Rayon moyen	$\mathbf{m}_{_i} =$	1 925,00	mm
Conditions aux limites du composant		Direction radiale	Direction méridienne
Extrémité 1		Appuye	Appuye
Extrémité 2		Appuye	Appuyé
Imperfections de fabrication			
Référentiel de construction		CODAP 2005	
Diamètre maximum mesuré		**	mm
Diamètre minimum mesuré		**	mm
Ovalisation		0,020	
Classe de tolérance relative à l'ovalisation		C	
Ecarts de forme			
Dir. longitudinale hors zones soudées		8,00	mm
Dir. longitudinale zones soudées		-	mm
Dir. circonférentielle hors zones soudés		- 53	mm
Dir. circonférentielle zones soudées		100	mm
Classe de tolérance relative aux écarts de forme		С	3
Ecart d'alignement des fibres moyennes		3,50	mm
Ecart d'alignement des fibres moyennes / e_i		0.1400	4
Classe de tolérance relative aux écarts d'alignement		C	

CONTRAINTES CRITIQUES DE VOILEMENT ENVELOPPE CYLINDRIQUE

Page 7 18/02/15

Réservoir sur berceaux - Direction circonférentielle

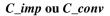
Contrainte critique de voilement circonférentiel

$$\frac{R}{e_0} \le 0.21 \sqrt{\frac{E}{R_{pl}}}$$
 Eq. C9.A12.6-1 77,00 > 5.91

La vérification du voilement sous l'effet des contraintres de compresion circonférentielles est nécessaire

Paramètre omega_teta	Eq. C9.A12.6-4	omega_teta =	27,35	
Coefficient C_teta	Tab. C9.A12.6-1	$C_{teta} =$	1,50	
Coefficient C_tetas	Tab. C9.A12.6-2	$C_{\text{tetas}} =$	1,51	
Contrainte théorique de voilement	§ C9.A12.6 d)	sigma_tetaRer =	138,81	MPa
Facteur alpha_teta (Tolérances)	§ C9.A12.6 e)	alpha_teta =	0,50	
Elancement limite lambda_cc0teta	Eq. C9.A12.6-19	lambda_cc0teta =	0,40	
Facteur dom.plast. beta_teta	Eq. C9.A12.6-20	beta_teta =	0,60	
Exposant d'interaction neta_teta	Eq. C9.A12.6-21	neta_teta =	1,00	
Elancement réduit lambda_ccteta	Eq. C9.A12.6-22	lambda_ccteta =	1,38	
Elancement limite lambda_cepteta	Eq. C9.A12.6-23	lambda_cepteta =	1,12	
Coeff. de réduction khi_teta	Eq. C9.A12.6-24+	khi_teta =	0,26	Flambement élastique
Contrainte critique	Eq. C9.A12.6-27	sigma_tetaRk =	69,41	MPa
Pres. ext./ Depression P_max		$\mathbf{P}_{-}\mathbf{max} =$	0,90	MPa
Coefficient d'interaction	Eq. C9.A128.3-2	k teta =	1,45	

ANNEXE 4 RESERVOIRS SPHERIQUES 1° PARTIE DETERMINATION DES FREQUENCES PROPRES ET ESTIMATION DE LA REPONSE SISMIQUE A PARTIR DE CALCULS ANALYTIQUES (Procédure 1)

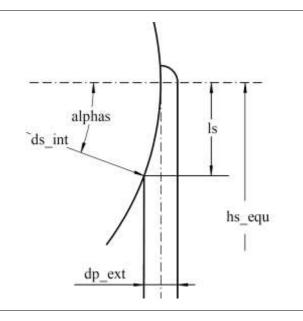

Figure A4/1-1 & Figure A4/1-2

Notations

	=	
C_imp	=	Coefficient permettant de déterminer la masse impulsive
ds_int	=	Diamètre intérieur de la sphère
dp_ext	=	Diamètre extérieur des poteaux
dp_int	=	Diamètre intérieur des poteaux
ds_moy_equ	=	Diamètre moyen de la sphère à l'équateur
dt_ext	=	Diamètre extérieur des tirants
dt_eint	=	Diamètre intérieur des tirants
ер	=	Epaisseur des poteaux
es_equ =	=	Epaisseur de la sphère à l'équateur
et	=	Epaisseur des tirants
E_poteaux	=	Module d'élasticité du matériau des poteaux
E_tirants	=	Module d'élasticité du matériau des tirants
g	=	Accélération de la gravité = 9,81 m/s ²
hs_equ	=	Hauteur à l'équateur
ht	=	Hauteur au droit de la fixation du tirant
H_rem	=	Hauteur de remplissage
ip	=	Rayon de giration d'un poteau
It	=	Rayon de giration d'un tirant
Ip	=	Moment d'inertie d'un poteau
It	=	Moment d'inertie d'un tirant
m_conv	=	Masse convective
m_imp	=	Masse impulsive
m_imp_tot	=	Masse totale de la sphère seule+ Masse impulsive+Masse des poteaux
m_prod	=	Masse volumique du produit stocké
m_prod_tot	=	Masse totale du produit stocké

m_totale		Masse totale de l'équipement (sphère, poteaux et produit stocké)	
ms_mat	=	Masse volumique du matériau de la sphère	
ms_tot	=	Masse totale de la sphère seule	
mt_mat	=	Masse volumique du matériau des tirants	
mp_mat	=	Masse volumique du matériau des poteaux	
mp_unit	=	Masse d'un poteau	
np	=	Nombre de poteaux	
p	=	Pression de service	
Rem	=	Taux de remplissage de la sphère (%)	
Rp_poteaux	=	Limite d'élasticité du matériau des poteaux	
Note: Les têtes de poteaux et les fûts des poteaux peuvent être réalisés dans des matériaux différents. Il convient alors de s'assurer que les hypothèses retenues tant en ce qui concerne les caractéristiques du matériau qu'en ce qui concerne les longueurs « de flambement» conduisent à des résultats raisonnablement conservatifs.			
Rp_sphère	=	Limite d'élasticité du matériau de la paroi de la sphère	
Rp_tirants	=	Limite d'élasticité du matériau des tirants	
Sp	=	Aire de la section droite d'un poteau	
St	=	Aire de la section droite d'un tirant	

Coefficients destinés à déterminer les masses impulsive et convective



Note: Les courbes issues de la référence [181] ont été retenue dans le cadre des applications du présent guide; Toutefois, pour ce qui est des masses impulsives, les valeurs, plus conservatives, obtenues à partir de la courbe issue de la référence [54] sont acceptables.

Figure A4/1-3 : Coefficients destinés à déterminer les masses impulsive et convective en fonction du taux de remplissage

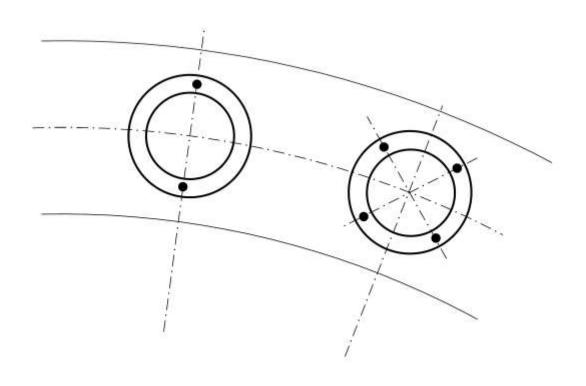
Calcul de la fréquence propre fondamentale (Mode impulsif - Direction horizontale)

$$alphas = arccos \left[1 - \frac{dp_ext - ep}{ds_moy_equ} \right]$$
 A4/1-1

$$ls = \frac{ds_moy_equ_d}{2} sin(alphas)$$
 A4/1-2

$$lc = hs_equ - 0,45 ls$$

A4/1-3

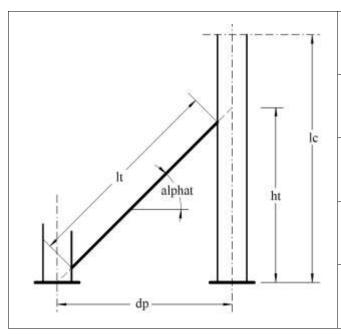

$$kp = np \frac{Cond E_poteaux Ip}{lc^3}$$
 A4/1-4
Note 1

Cond = 3 Pieds de poteaux « appuyés »

Cond = 12 Pieds de poteaux « encastrés »

2 ancrages : « appuyés » [183]

4 ancrages : « encastrés » [183]



$$Fréquence~(Horizontale~sans~tirant) = rac{1}{2~\pi}~\sqrt{rac{kp}{m_imp_tot}}$$

A4/1-5

Figure A4/1-4

Calcul de la fréquence propre fondamentale (Mode impulsif - Direction horizontale) (suite)

$$b\acute{e}tat = \frac{360}{np}$$
 A4/1-6

$$lt = ds_moy_equ sin \left(\frac{b\acute{e}tat}{2}\right)$$
 A4/1-7

$$alphat = arctan\left(\frac{ht}{lt}\right)$$
 A4/1-8

$$kt = \frac{Et \ St}{lt} [cos \ (alphat)]^3$$
 A4/1-9

$$a = \frac{kt}{lc} \qquad b = 3 - a^2 \qquad A4/1-10$$

$$k1 = \frac{Cond \ E_poteaux \ Ip}{lc^3}$$
 $k2 = \frac{4 \ k1}{kt \ a^{32}} + 12 - 8 \ a$ A4/1-11

$$kpt = \frac{np}{2} \left[k1 + \frac{k1 \ k2}{b(a^2 - 3) + k2} \right]$$
 A4/1-12
Note 1

$$fh_imp = \frac{1}{2 \pi} \sqrt{\frac{kpt}{m_imp_tot}}$$
 A4/1-13
Note 2

$$kptc = np \left[\frac{k1 \ k2}{b(a^2 - 3) + k2} \right]$$
 A4/1-14
Note 1

Fréquence (horizontale tirants en traction et en compression) =
$$fh_{imp} = \frac{1}{2\pi} \sqrt{\frac{kptc}{m_{imp_{tot}}}}$$
 Note 2

Calcul de la fréquence propre fondamentale (Direction verticale)

$$kpv = np \frac{E_poteaux Sp}{lc}$$
 A4/1-16

Fréquence (Direction verticale) =
$$fv_{imp} = \frac{1}{2\pi} \sqrt{\frac{kpv}{m_{totale}}}$$
 A4/1-17

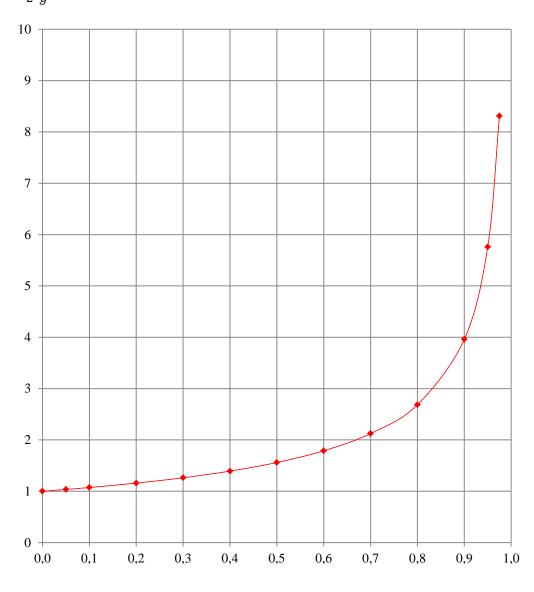

Note 1 : La valeur de la raideur ainsi déterminée peut être modifiée par la prise en compte, le cas échéant, par l'influence du comportement du sol. Note 2 : Dans la cadre du présent guide et dans le cas d'un équipement pourvu de tirants/contreventement, il est recommandé, sauf justifications appropriées, de considérer qu'ils ne « travaillent » qu'en traction.

Figure A4/1-4 (suite)

Détermination de la fréquence propre du 1° mode convectif

$$fv_{-}imp = \frac{\omega}{2 \pi}$$

$$\frac{\omega^2 \; ds_int}{2 \; g}$$

 H_rem

Figure A4/1-5

Exemples

Les résultats présentés ci-dessous illustrent le calcul des fréquences propres de différentes sphères et l'influence des conditions aux limitent retenues pour les calculs.

Période	Exemple 1 [176] Note1	Exemple 2 [54] Note 2	Exemple 2 [172] Note 3	Exemde 4a [183] Note 4	Exemple 4b [183] Note 4	Exemple 5 [181] & [183] Note 5	
		Horizon	tale Sans tirant	;			
Procédure 1			1,56 s	2,90 s	1,45 s	0,40 s	
Eléments finis			[172] : 1,57 s	[183] : 2,89 s	[183] : 1,46 s	[183] : 0,45 s	
	Horizontale Tirants en traction						
Procédure 1	0,67 s		0,71 s	1,13 s	0,92 s	0,323 s	
Eléments finis			[172] : 0,70 s	[183] : 1,20 s	[183] : 0,95 s	[183] : 0,333 s	
Calculs analytiques	[176] : 0,67 s						
	Horiz	zontale Tirants	en traction et o	compression			
Procédure 1		0,432 s	0,53 s				
Eléments finis			[172] : 0,53 s				
Calculs analytiques		[54] : 0,446 s					
Verticale							
Procédure 1	0,065s			0,122 s	0,122 s	0,031 s	
Eléments finis				[183] : 0,124 s	[183] : 0,123 s	[183] : 0,049 s	
Calculs analytiques	[176] : 0,064 s						

 $Note \ 1: Pieds \ de \ poteaux \ « \ semi-encastr\'es \ » \ (=6) \ et \ « forçage \ » \ de \ la \ longueur \ lc \ compte \ tenu \ des \ approximations \ du \ document \ de \ r\'ef\'erence$

Note 2 : Pieds de poteaux « appuyés » Masse impulsive suivant [54]

Note 3 : Pieds de poteaux « appuyés » Masse impulsive suivant [181]

Note 4a : Pieds de poteaux « appuyés » Note 4b : Pieds de poteaux « encastrés »

Note 5 : Pieds de poteaux « encastrés »

Figure A4/1-6

Vérification des contraintes Poteaux non contreventés

Détermination des efforts horizontaux

Pour une direction de séisme donnée, l'effort latéral (appliqué au centre de gravité de la sphère) est donné par la formule suivante :

$$q = qx = qy = \sqrt{(g_{imp_hor m_imp_tot})^2 + (g_{conv_hor m_conv})^2}$$
 A4/1-18

où g_(imp_hor et) g_(conv_hor sont) les accélérations obtenues à partir des spectres de calcul pour l'analyse élastique (Spectres réduits en fonction des coefficients définis Figure 4.1).

Conformément à la possibilité offerte au § 1.3.4 et en assimilant une sphère sur poteaux à une structure axisymétrique, une seul direction horizontale de séisme est prise compte. Dans ces conditions et conformément aux exigences de ([27a] § 4.3.3.5.1) deux cas doivent être envisagés pour l'effort latéral total Q:

L'affant latánal total O act ácal à .	Q1 = 1,0 q	A4/1-19a
L'effort latéral total Q est égal à :	Q2 = 0.3 q	A4/1-19b
L'effort tranchant dans un poteau est égal à :	$V1 = \frac{Q1}{np}$	A4/1-20a
	$V2 = \frac{Q2}{np}$	A4/1-20b

$Coeff_Moments = 0.66$	Pieds de poteaux « appuyés »	A4/1-21
$Coeff_Moments = 0.50$	Pieds de poteaux « encastrés »	A4/1-22
$a_poteaux = lc Coeff_Moments$		A4/1-23
$b_poteaux = lc (1 - Coeff_Moments)$		A4/1-24
Moment en tête de noteeuw	$M_{tête1} = \pm (+a_{poteaux} V1)$	A4/1-25a
Moment en tête de poteaux	$M_{tête2} = \pm (+a_{poteaux} V2)$	A4/1-25b
Moment on mind do motocour	$M_pied1 = \pm (-b_poteaux\ V1)$	A4/1-26a
Moment en pied de poteaux	$M_pied2 = \pm (-b_poteaux V2)$	A4/1-26b
E-man aniala dana la matanana	$F1 = -\frac{m_totale \ (g \pm 0.3 \ g_imp_vert)}{np}$	A4/1-27a
Force axiale dans les poteaux	$F2 = -\frac{m_totale \ (g \pm g_imp_vert)}{np}$	A4/1-27b

Contrainte longitudinale dans un poteau	$SigmaN = \frac{M}{Ip / dp_ext * 2} + \frac{F}{Sp}$ A4/1-28
$SigmaN = \frac{M_{t}ête1}{Ip / dp_{ext} * 2} + \frac{F1}{Sp}$	$SigmaN = \frac{M_pied1}{Ip / dp_ext * 2} + \frac{F1}{Sp}$
$SigmaN = \frac{M_{t}ête1}{Ip / dp_{ext} * 2} + \frac{F1}{Sp}$	$SigmaN = \frac{M_pied1}{Ip / dp_ext * 2} + \frac{F1}{Sp}$
$SigmaN = \frac{M_{tête2}}{Ip / dp_{ext * 2}} + \frac{F2}{Sp}$	$SigmaN = \frac{M_pied2}{Ip / dp_ext * 2} + \frac{F2}{Sp}$
$SigmaN = \frac{M_{tête2}}{Ip / dp_{ext} * 2} + \frac{F2}{Sp}$	$SigmaN = \frac{M_pied2}{Ip / dp_ext * 2} + \frac{F2}{Sp}$

Note: Les têtes de poteaux et les fûts des poteaux pouvant être réalisés dans des matériaux différents, les exigences ci-dessus peuvent être adaptées en conséquence.

Les contraintes longitudinales résultant des différentes combinaisons des moments et des forces axiales définies cidessus doivent respecter les exigences ci-dessous :

La contrainte longitudinale minimum ne doit pas être inférieure à la contrainte critique de voilement déterminée conformément aux exigences de [163] ou de [167]

La contrainte longitudinale maximum ne doit pas être supérieure à la limite d'élasticité du matériau affectée d'un coefficient partiel de sécurité de 1,1.

$$SigmaCis = \frac{4}{3} \frac{V1}{Sp}$$

A4/1-29

La contrainte de cisaillement ne doit pas être supérieure à 0,5 fois la limite d'élasticité du matériau affectée du coefficient partiel de sécurité de 1,1.

Interaction

L'interaction entre les contraintes longitudinales et les contraintes de cisaillement doit être vérifiée conformément aux exigences de [163] ou de [167] à partir des coefficients déterminés à partir des procédures définies par ces mêmes références.

Détermination des efforts horizontaux

Pour une direction de séisme donnée, l'effort latéral (appliqué au centre de gravité de la sphère) est donné par la formule suivante:

$$q = qx = qy = \sqrt{(g_{imp_hor m_imp_tot})^2 + (g_{conv_hor m_conv})^2}$$
 A4/1-30

où g_(imp_hor et) g_(conv_hor sont) les accélérations obtenues à partir des spectres de réponse élastique .

Conformément à la possibilité offerte au § 1.3.4 et en assimilant une sphère sur poteaux à une structure axisymétrique, une seul direction horizontale de séisme est Q0 = 1.0 qprise compte. Dans ces conditions l'effort latéral total Q maximal est égal à :

A4/1-31

Évaluation de la contrainte de traction dans un tirant :

Accélération « équivalente » : A4/1-32

Allongement = Accélération_nr Allongement du tirant : A4/1-33

A4/1-34 $\underline{\textit{Allongeme}}$ nt $Sigma_tirant = E_tirants$ Contrainte de traction : (Notes 1 & 2)

Note 1 : Cette formulation suppose que les dimensions du tirant sont homogènes sur toute sa longueur. Dans le cas contraire il convient d'adapter la longueur lt de la formule A4/1-23 en fonction de la longueur de la partie du tirant soumise préférentiellement à déformation.

Note 2 : Par ailleurs, la précontrainte éventuelle peut être ajoutée à la valeur de Sigma_tirant.

Si Sigma_tirant est inférieure à la limite d'élasticité du matériau du tirant, soit les tirants doivent être modifiés soit les vérifications relatives aux contraintes dans les poteaux doivent être réalisée à partir de la procédure 2 sans prise en compte de coefficient de réduction.

Si Sigma_tirant est supérieure à la limite d'élasticité du matériau du tirant, alors les coefficients de réduction de la Figure 4 peuvent être utilisés pour déterminer le spectre de calcul pour l'analyse élastique à utiliser pour les vérifications relatives aux contraintes dans les poteaux.

Toutefois, il convient de vérifier au préalable et à partir de la procédure ci-dessous que lorsque la contrainte de traction dans un tirant atteint la limite d'élasticité du matériau, les contraintes dans les poteaux calculées avec les accélérations déterminées à partir des spectres de réponse élastique restent acceptables.

Note: Les éléments de fixation des tirants (oreilles...) doivent être vérifiés à partir des règles proposées dans le référentiel retenu pour le dimensionnement de l'appareil.

Détermination de l'effort latéral lorsque la contrainte de traction dans un tirant atteint la limite d'élasticité du matériau

Les formules A4/1-32 à A4/1-34 permettent de déterminer la valeur de l'effort latéral total *Q3* maximal pour lequel *Sigma_tirant* est égale à la limite d'élasticité du matériau.

L'effort tranchant dans un poteau est alors égal à :

$$V3 = \frac{Q3}{np}$$

A4/1-35

$Coeff_Moments = 0.66$	Pieds de poteaux « appuyés »	A4/1-36
$Coeff_Moments = 0.50$	Pieds de poteaux « encastrés »	A4/1-37
$a_poteaux = lc Coeff_Moments$		A4/1-38
$b_poteaux = lc (1 - Coeff_Moments)$		A4/1-39
Moment en tête de poteaux	$M_{\text{tête3}} = \pm (+a_{\text{poteaux}} V3)$	A4/1-40
Moment en pied de poteaux	$M_pied3 = \pm (-b_poteaux\ V3)$	A4/1-41
Force axiale dans les poteaux	$F3 = -\frac{m_totale \ (g \pm 0.3 \ g_imp_vert)}{np}$	A4/1-42

Contrainte longitudinale dans un poteau	$SigmaN = \frac{M}{Ip / dp_ext * 2} + \frac{F}{Sp}$ A4/1-43
$SigmaN = \frac{M_{t}ête3}{Ip / dp_{ext} * 2} + \frac{F3}{Sp}$	$SigmaN = \frac{M_pied3}{Ip / dp_ext * 2} + \frac{F3}{Sp}$
$SigmaN = \frac{M_{t}ête3}{Ip / dp_{ext} * 2} + \frac{F3}{Sp}$	$SigmaN = \frac{M_pied3}{Ip / dp_ext * 2} + \frac{F3}{Sp}$

Note: Les têtes de poteaux et les fûts des poteaux pouvant être réalisés dans des matériaux différents, les exigences ci-dessus peuvent être adaptées en conséquence.

Les contraintes longitudinales résultant des différentes combinaisons des moments et des forces axiales définies cidessus doivent respecter les exigences ci-dessous :

La contrainte longitudinale minimum ne doit pas être inférieure à la contrainte critique de voilement déterminée conformément aux exigences de [163] ou de [167]

La contrainte longitudinale maximum ne doit pas être supérieure à la limite d'élasticité du matériau affectée d'un coefficient partiel de sécurité de 1,1.

Contrainte de cisaillement dans un poteau

$$SigmaCis = \frac{4}{3} \frac{V3}{Sp}$$

A4/1-44

La contrainte de cisaillement ne doit pas être supérieure à 0,5 fois la limite d'élasticité du matériau affectée du coefficient partiel de sécurité de 1,1.

Interaction

L'interaction entre les contraintes longitudinales et les contraintes de cisaillement doit être vérifiée conformément aux exigences de [163] ou de [167] à partir des coefficients déterminés à partir des procédures définies par ces mêmes références.

Si les conditions ci-dessus sont respectées, alors la détermination des efforts et des contraintes dans les poteaux peuvent être réalisées en utilisant, en fonction du mode de défaillance étudié, les coefficients de réduction définis au Figure 4.1 pour des poteaux contreventés conformément à la procédure ci-après. Si tel n'est pas le cas, alors soit les tirants doivent être modifiés soit, éventuellement, les vérifications ci-dessus, relatives aux contraintes dans les poteaux, doivent être réalisées à partir de la procédure 2, toujours sans prise en compte de coefficient de réduction.

Détermination des efforts horizontaux

Pour une direction de séisme donnée, l'effort latéral (appliqué au centre de gravité de la sphère) est donné par la formule suivante :

$$q = qx = qy = \sqrt{(g_imp_hor\ m_imp_tot)^2 + (g_conv_hor\ m_conv)^2}$$

A4/1-45

où g_(imp_hor et) g_(conv_hor sont) les accélérations obtenues à partir des spectres de calcul pour l'analyse élastique (Spectres réduits en fonction des coefficients définis Figure 4.1).

Conformément à la possibilité offerte au § 1.3.4 et en assimilant une sphère sur poteaux à une structure axisymétrique, une seul direction horizontale de séisme est prise compte. Dans ces conditions et conformément aux exigences de ([27a] § 4.3.3.5.1) deux cas doivent être envisagés pour l'effort latéral total Q:

L'affant latéral total O art (cal à c	Q1 = 1,0 q	A4/1-46a
L'effort latéral total Q est égal à :	Q2 = 0.3 q	A4/1-46b
L'effort tranchant dans un poteau est égal à :	$V1 = \frac{Q1}{np}$	A4/1-47a
	$V2 = \frac{Q2}{np}$	A4/1-47b

$Coeff_Moments = 0.66$	Pieds de poteaux « appuyés »	A4/1-48
$Coeff_Moments = 0.50$	Pieds de poteaux « encastrés »	A4/1-49
$a_poteaux = lc Coeff_Moments$		A4/1-50
$b_poteaux = lc (1 - Coeff_Moments)$		A4/1-51
Moment en tête de noteeuw	$M_{tête1} = \pm (+a_{poteaux} V1)$	A4/1-52a
Moment en tête de poteaux	$M_{tête2} = \pm (+a_{poteaux} V2)$	A4/1-52b
Moment on pied de petecuy	$M_pied1 = \pm (-b_poteaux\ V1)$	A4/1-53a
Moment en pied de poteaux	$M_pied2 = \pm (-b_poteaux \ V2)$	A4/1-53b
Force oxiole done les netecur	$F1 = -\frac{m_totale \ (g \pm 0.3 \ g_imp_vert)}{np}$	A4/1-54a
Force axiale dans les poteaux	$F2 = -\frac{m_totale \ (g \pm g_imp_vert)}{np}$	A4/1-54b

$SigmaN = \frac{M_{t}ête1}{Ip / dp_{ext} * 2} + \frac{F1}{Sp}$	$SigmaN = \frac{M_pied1}{Ip / dp_ext * 2} + \frac{F1}{Sp}$
$SigmaN = \frac{M_{t}ête1}{Ip / dp_{ext} * 2} + \frac{F1}{Sp}$	$SigmaN = \frac{M_pied1}{Ip / dp_ext * 2} + \frac{F1}{Sp}$
$SigmaN = \frac{M_{tête2}}{Ip / dp_{ext * 2}} + \frac{F2}{Sp}$	$SigmaN = \frac{M_pied2}{Ip / dp_ext * 2} + \frac{F2}{Sp}$
$SigmaN = \frac{M_{tête2}}{Ip / dp_{ext * 2}} + \frac{F2}{Sp}$	$SigmaN = \frac{M_pied2}{Ip / dp_ext * 2} + \frac{F2}{Sp}$

Note : Les têtes de poteaux et les fûts des poteaux pouvant être réalisés dans des matériaux différents, les exigences ci-dessus peuvent être adaptées en conséquence.

Les contraintes longitudinales résultant des différentes combinaisons des moments et des forces axiales définies cidessus doivent respecter les exigences ci-dessous :

La contrainte longitudinale minimum ne doit pas être inférieure à la contrainte critique de voilement déterminée conformément aux exigences de [163] ou de [167]

La contrainte longitudinale maximum ne doit pas être supérieure à la limite d'élasticité du matériau affectée d'un coefficient partiel de sécurité de 1,1.

Contrainte de cisaillement dans un poteau

$$SigmaCis = \frac{4}{3} \frac{V1}{Sp}$$

A4/1-56

La contrainte de cisaillement ne doit pas être supérieure à 0,5 fois la limite d'élasticité du matériau affectée du coefficient partiel de sécurité de 1,1.

Interaction

L'interaction entre les contraintes longitudinales et les contraintes de cisaillement doit être vérifiée conformément aux exigences de [163] ou de [167] à partir des coefficients déterminés à partir des procédures définies par ces mêmes références.

DT 114 - Guide Équipements chaudronnés & machines tournantes destinés aux procédés industriels

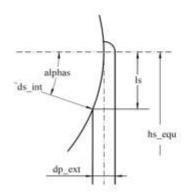
ANNEXE 4 RESERVOIRS SPHERIQUES 2° PARTIE EXEMPLE (Procédure 1)

Page 1 08/03/15

Sphère [172]

100	-		÷		
S	D	h	é	r	¥

Diamètre intérieur		ds int-	19 625,50	mm
Epaisseur (à l'équateur)		es_equ=	74,50	mm
Diamètre moyen (à l'équ	ateur)	ds moy equ=	19 700,00	mm
Hauteur (à l'équateur)		hs equ-	12 000,00	mm
Masse totale de la sphère	(à épaisseur constante)	ms_tot =	707 647,97	kg
Matériau	NF EN 10028-2		P355GH	
Limite d'élasticité		Rp_sphere =	355,00	MPa
Masse volumique		ms_mat =	7 850,00	kg/m3
Pression		p =		bar
Poteaux				
Nombre de poteaux		np -	12	


Nombre de poteaux	np -	12	
Diamètre extérieur du poteau	dp_ext=	1 016,00	mm
Epaisseur du poteau	ep =	18,00	mm
Diamètre intérieur du poteau	dp_int =	980,00	mm
Moment d'inertie du poteau	Ip -	7,0285E+9	mm4
Rayon de giration	ip -	352,90	mm
전 · 경	110	Tête	F

			rete	I ut	
Matériau	NF EN 10028-2		P355GH	P355GH	
Module d'élastici	té	E_poteaux =	210 000,00	210 000,00	MPa
Limite d'élasticité		Rp_poteaux =	345,00	345,00	MPa
Masse volumique	É	mp_mat -	7 850,00	7 850,00	kg/mm3
Surface de la sect	ion droite	Sp=	56 435,57	mm2	
Masse d'un potea	u	mp_unit =	5 220,35	kg	

Produit

Remplissage	Rem =	97.50	96
Masse volumique	m prod =	522,00	kg/m3
Masse de produit	m_prod_tot =	2 014 354,63	kg

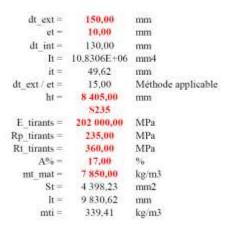
Masse impulsive	[181] m_imp =	0,98	1 964 042,97	kg	Annexe 1
	[54] m imp =	0.89	1 787 345,24	kg	Annexe 1
Masse convective	[181] m_conv =	0,02	32 832,62	kg	Annexe 1

		alphas -	18,32		[9e] A4/1-1
		ls =	3 095,37	mm	[9e] A4/1-2
Coeff 1	ong	effective -	0.45		
		le =	10 607,08	mm	[9e] A4/1-3
		tc/ip =	30,06	Méthode applicabl	le
C	oeff	Poteaux -	12	Encastré-Encastré	
		kp =	178 097,96	N/mm	[9e] A4/1-4
[181]	133	imp_tot -	2 734 335,09	kg	
[54]	m	imp_tot =	2 557 637,36	kg	

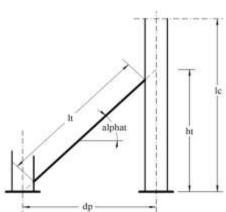
Mode impulsif (Direction horizontale) Sans tirants

[181]	Fréquence =	1,28	Hz	[9e] A4/1-5
CHICAGO.	Période =	0,78	8	0.000.000
[54]	Fréquence =	1,33	Hz	A4/1-5
	Période -	0.75	5	

Page 2 08/03/15


[9e] A4/1-11

[9e] A4/1-10


Sphère [172]

Tirants

Diamètre extérieur du tirant	
Epaisseur du tirant	
Diamètre intérieure du tirant	
Moment d'inertie du tirant	
Rayon de giration	
Hauteur au droit de la fixation du tirant	ť.
Matériau	
Module d'élasticité	
Limite d'élasticité	
Résistance à la traction	
Allongement à rupture	
Masse volumique	
Surface de la section droite	
Longueur	
Masse d'un tirant	

12,83 Sp/St > 8: Méthode applicable

bētat =	30,00	0	[9e] A4/1-6
dp =	5 098,74	mm	[9e] A4/1-7
alphat -	58,76		[9e] A4/1-8
	1,026	rad.	
kt-	24 311,47	N/mm	[9e] A4/1-9
$\mathfrak{a} =$	0,79		[9e] A4/1-10
k1 =	14 841,50	N/mm	[9e] A4/1-11

N/mm

m_totale = 2 792 792,67 kg

Sp/St -

k2 -

b =

Mode impulsif (Direction horizontale)

Si les tirants en compression ne sont pas pris en compte :

[9e] A4/1-12	kpt -	3,06E+05	N/mm
	avec mas	se impulsive	de [181]
[9e] A4/1-13	Fréquence =	1,68	Hz
	Période =	0,5941	5
avec masse tot	ale de produit :	1,67	
avec masse imp		1.74	

Mode impulsif (Direction horizontale)

9,55

2,37

Si les tirants en compression sont pris en compte :

E+05 N/mm [9e] A4/1-14	kpt_T&C =
ulsive de [181] :	avec masse
00 Hz [9e] A4/1-15	Fréquence =
50 s	Période =

Mode impulsif (Direction verticale)

	avec masse impulsive de [181] :			
[9e] A4/1-16	kpv =	1,34E+07	N/mm	
[9e] A4/1-17	Fréquence =	11,52	Hz	
	Période =	0.0868	8	

Mode convectif

avec mass	e convective	de[[81]];	
omega =	2,88	Annexe 1	[9e] Figure A4/1-5
Fréquence =	0,46	Hz	[9e] Figure A4/1-5
Période =	2,1796	8	

Page 3 01/05/15

Sphère [172]

		Spine				
Accélérations s	ismiques					
Mode impulsif (Direction horize	ontole)	g imp hor nr =	3,44	m/s2	Annexe 1
Mode convectif		outene)	g conv nr =	1.26	m/s2	Annexe 1
Mode impulsif (cular	g imp vert nr =	6,54	m/s2	Annexe 1
retouc impussit (Direction verns	are)	g_mip_verv_m -	0,54	III SE	Annexe 1
Mode impulsif (Direction horizo	ontale)	g imp ho r=	1,72	m/s2	Annexe 1
Mode convectif			g conv r -	1.26	m/s2	Annexe 1
Mode impulsif (ale)	g imp vert r =	3,63	m/s2	Annexe 1
	1º Situation	2° Situation	Vacu	ication ve Da		
	(1+0.0)	(0.3 + 0.0)	vern	ication vs Rp (1 + 0,0)	tirant	
	(4 + 0,0)	0,3		1		
Effort latéral (
Q nr =	9,40E+06	2.82E+06	[9e] A4/1-31	6.74E+06	N	
Q_r=	4,70E+06	1,41E+06	[9e] A4/1-46	-	N	
Effort tranchar				5 (OF . 05	A.C	10-1-140-25
V_nr =	7,83E+05	2,35E+05	for 3 4 4 5 4 5	5,62E+05	N	[9e] A4/1-35
V_r =	3,92E+05	1,17E+05	[9e] A4/1-47		N	
Contrainte de t	raction dans le	s tirants				
Accélération_nr =	3,44	1.03	[9e] A4/1-32	2,47	m/s2	
Allongement =	15,94	4,78	[9e] A4/1-33	11,44	mm	
Précontrainte =	0,00	0.00		0,00	MPa	
Contrainte de traction =	327,49	98,25	[9e] A4/1-34	235,00	MPa	
Accelération	n pour laquelle	la limite d'élast	icité est atteinte -	2,47	m/s2	
Moments dans	les poteaux	· ·	Coeff Moments =	0.50		[9e] A4/1-36 & 48
			a poteaux =	5 303,54	mm	[9e] A4/1-38 & 50
			b_poteaux =	5 303,54	mm	[9e] A4/1-39 & 51
Moment en tête	de noteaux					
M nr tête =	4,15E+09	1.25E+09		2,98E+09	N/mm	
M r tête =	2,08E+09	6.23E+08			N/mm	
M_tête =	2,08E+09	1,25E+09	[9e] A4/1-52	2,98E+09	N/mm	[9e] A4/1-40
10 V 00						
Moment en pie		1.255 00		2.000.00	1800000	
M_nr_pied =	-4,15E+09	-1,25E+09		-2,98E+09	N/mm	
M_r_pied =	-2,08E+09	-6,23E+08	FO. 3 A 412 FT	2.005.00	N/mm	10.7 5 4 7 4 1
M_pied =	-2,08E+09	-1,25E+09	[9e] A4/1-53	-2,98E+09	N/mm	[9e] A4/I-41
Forces axiales	lans les poteau	x				
F_nr_min =	-3,81E+06	-3,81E+06		-3,81E+06	N	
F_r_min =	-3,13E+06	-3,13E+06		Les	N	
F_min =	-3,13E+06	-3,81E+06	[9e] A4/1-54	-3,81E+06	N	[9e] A4/1-42
F nr max =	-7.61E+05	-7,61E+05		-7,61E+05	N	
F r max =	-1,44E+06	-1.44E+06			N	
F_max =	-1.44E+06	-7,61E+05	[9e] A4/1-54	-7,61E+05	N	[9e] A4/1-42
- max		1,000.00	1671	. 40 . 40 . 021	1.55	[velicianis

Page 4 01/05/15

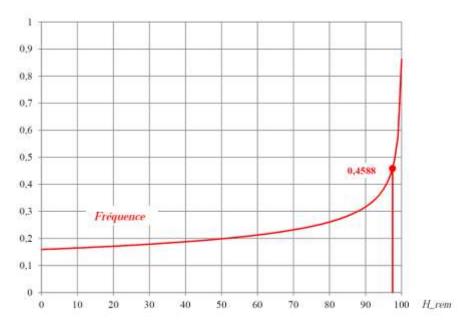
Sphère [172]

Contraintes le	ongitudinales en	tête de poteau		I/v -	1,38E+07	mm3
[9e] A4/1-55 M_tête +	[9e] A4/1-55 M_tête+	[9e] A4/1-55 M_tête +	[9e] A4/1-55 M_tête -	[9e] A4/1-43 M_tête +	[9e] A4/1-43 M_tête -	
150,10	-150,10	90,06	-90,06	215,42	-215,42	MPa
F_min =	F_min =	F_min =	F_min =	F_min =	F_min =	
-55,44	-55,44	-67,43	-67,43	-67,43	-67,43	MPa
94,66	-205,54	22,63	-157,48	147,99	-282,84	MPa
F_max =	F_max =	F_max =	F_max =	F_max =	F_max =	
-25,47	-25,47	-13,49	-13,49	-13,49	-13,49	MPu
124,63	-175,57	76,57	-103,54	201,93	-228,90	MPa
	ei v v	202.04	928	Annexe 3	MPa	100000000000000000000000000000000000000
	SigmaN_min =	-282,84	>	-289,71		Acceptable
	SigmaN_max =	201,93	<	313,64	MPa	Acceptable
Contraintes d	e cisaillement da	ns les poteaux				
SigmaCis nr -	18,50	5,55		13.28	MPa	
SigmaCis r=		2.78			MPa	
SigmaCis =	9,25	2,78	[9e] A4/1-56	13,28	MPa	[9e] A4/1-44
	SigmaCis =	13,28	<	156,82	MPa	Acceptable
Interaction					[16	3b] Eq. C9.A12.8.3-5
k x	k teta	k tau	k i			
1.94	200 0	1.88	-			
0,9545	9	0,0096		0,9641	< 1	Acceptable
0,4251		0,0096	-	0,4347	< 1	Acceptable

Page 5 01/05/15

Sphere [172]


Contraintes le	ongitudinales en	pied de poteau		I/v =	1,38E+07	mm3
[9e] A4/1-55 M_pied +	[9e] A4/1-55 M_pied -	[9e] A4/1-55 M_pied +	[9e] A4/1-55 M_pied -	[9e] A4/1-43 M_pied +	[9e] A4/1-43 M_pied -	
-150,10	150,10	-90,06	90,06	-215,42	215,42	MPa
F_min =						
-55,44	-55,44	-67,43	-67,43	-67,43	-67,43	MPa
-205,54	94,66	-157,48	22,63	-282,84	147,99	MPa
F_max =						
-25,47	-25,47	+13,49	-13,49	-13,49	-13,49	MPa
-175,57	124,63	-103,54	76,57	-228,90	201,93	MPa
	SigmaN_min =	-282,84	>	-289,71	MPa	Acceptable
	SigmaN_max =	201,93	<	313,64	MPa	Acceptable
Contraintes d	e cisaillement da	ns les poteaux				
SigmaCis nr -	18,50	5,55		13,28	MPa	
SigmaCis_r=		2,78			MPa	
SigmaCis =	9,25	5,55	[9e] A4/1-56	13,28	MPa	[9e] A4/1-44
	SigmaCis =	13,28	<	156,82		Acceptable
Interaction					[16	53b] Eq. C9.A12.8.3-5
k x	k teta	k tau	k_i			
1.94		1.88	7			
0,95	30-30	0.01		0,9641	< 1	Acceptable
0.43	122	0.01	32	0,4347	< 1	Acceptable
32025		200		1000000	200	



GUIDE SEISME - EQUIPEMENTS CHAUDRONNES Annexe 1 : Masses impulsive et masse convective

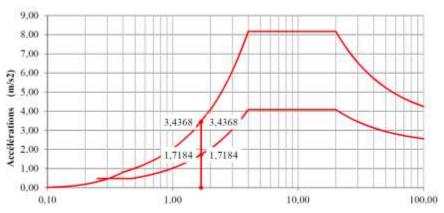
Page 6 08/03/15

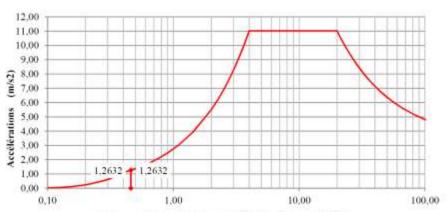
Sphere [172]

GUIDE SEISME - EQUIPEMENTS CHAUDRONNES Annexe 2 : Caractéristiques du séisme - Accélérations

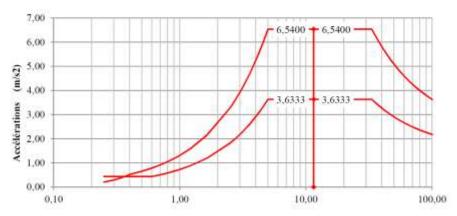
Page 7 08/03/15

Sphère [172]


Caractéristiques du séise	ne					
Type d'équipement				Sphère		
Zone de sismicité	3					
Classe de sol				В		
Equipement			Equ	ipement n	euf	
Arrêtê	Arri	tës du 4 Oc	tobre	2010 & d	u 13 Septembre	2013
Amortissement				5	96	
Coefficient de réduction	Mode impulsif horizon	ntal		2		
Coefficient de réduction	Mode convectif (Amortissement 0,5%			1		
Coefficient de réduction	Direction verticale			1,5		
ghg $1 = 2.42$	TBH = 0	05		TRV	- 0.03	
ghg_2 - 2,42	TCH - 0			TCV - 0.20		
gvg = 2.18	TDH = 2			70.00	= 2.50	
Csol = 1.35	TEH = 4			1103	4,00	
neta = 1,00	TFH = 1					
dhg = 0.05	1111-11	0,00				
		Périodes			Fréquence	200
Mode impulsif horizontal		0.5941	15		1.68	Hz
Mode convectif (Amortiss	ement 0.5%)	2,1796	s		0.46	Hz
Direction verticale		0,0868	s		11,52	Hz
Bande de fréquences		114	4-	0	96	
		Freq		Freq. =	Freq. +	
Accélérations : Spectre d						
Acc. sismique Mode imp.		3,4368		3,4368	3,4368	m/s2
Acc. sismique Mode conv		1,2632		1,2632	1,2632	m/s2
Acc. sismique verticale	gamma_v =	6,5400		6,5400	6,5400	m/s2
Accélérations : Spectre d		élastique				
Acc. sismique Mode imp.	hor, gamma_ch_1 =	1,7184		1,7184	1,7184	m/s2
Acc. sismique Mode conv	ectif gamma ch 2 -	1,2632		1,2632	1,2632	m/s2
Acc. sismique verticale	gamma_ev =	3,6333		3,6333	3,6333	m/s2


GUIDE SEISME - EQUIPEMENTS CHAUDRONNES Annexe 2 : Caractéristiques du séisme - Accélérations

Page 8 08/03/15



Fréquence (Hz) Mode impulsif horizontal

Fréquence (Hz) Mode convectif (Amortissement 0,5%)

Fréquence (Hz) Mode impulsif verticale

GUIDE SEISME - EQUIPEMENTS CHAUDRONNES Annexe 3 : Contraintes critiques de voilement Têtes des poteaux

Page 9 08/03/15

Sphere [172]

Situation				
Pression d'étude		P étude =	0.00	MPa
Température d'étude		T_étude =	20,00	°C
Matériau	NF EN 10028-2		P355GH	
Limite d'élasticité		Rp_poteaux =	345,00	MPa
Module d'élasticité			210 000,00	MPa
Coefficient de Poisson		nu =	0,30	
Caractéristiques géométriques	du composant		Cylindre	
Diamètre nominal (intérieur)		dp int -	998,00	mm
Epaisseur		ep =	18,00	mm
Longueur		le =	10 607,08	mm
Rayon moyen		m_i =	517,00	mm
Conditions aux limites du comp	posant		Direction radiale	Direction méridienne
Extrémité 1			Encastré	Encastré
Extrémité 2			Encastré	Encastré
Imperfections de fabrication				
Référentiel de construction			CODAP 1999	5
Diamètre maximum mesuré			1008	mm
Diamètre minimum mesuré			990	mm
Ovalisation			0.02	
Classe de tolérance relative à l'ov	valisation		Ċ	
Ecarts de forme				
Dir. longitudinale hors zones sou	idées		35	mm
Dir. longitudinale zones soudées				mm
Dir. circonférentielle hors zones			.6	mm
Dir. circonférentielle zones soud			20	mm
Distance entre deux soudures cir-			1000	mm
Distance entre deux soudures lon	gitudinales		1000	mm
Classe de tolérance relative aux é	écarts de forme		c	
Ecart d'alignement des fibres mo	yennes		2,80	mm
Ecart d'alignement des fibres mo			0.16	-
Classe de tolérance relative aux e			В	
Classe de tolérance globale			C	

GUIDE SEISME - EQUIPEMENTS CHAUDRONNES Annexe 3 : Contraintes critiques de voilement Têtes des poteaux

Page 10 08/03/15

Sphere [172]

Contrainte critique de voilement longitudinale

$$\frac{R}{e_{\rm L}} \le 0.03 \frac{E}{R_{\rm pt}}$$
 28.72 > 18.26 [163b] Eq. C9.A12.5-1

La vérification du voilement sous l'effet des contraintres de compresion longitudinales est nécessaire

Parametre omega_x	$omega_x =$	92,31		[163b] Eq. C9.A12,5-5
Coefficient C_xb	C_xb =	6		[163b] Tab. C9.A12.5
Coefficient C_x	C_x =	0,82		[163b] § C9.A12.5 c)
Cont, théorique de voilement	sigma_xRcr =	3623,127196	MPa	[163b] Eq. C9.A12.5-12
Paramètre Q (Tolérances)	Q =	16,00		[163b] § C9.A12.5 e)
Ampl. d'imperfection delta_wk	$delta_wk =$	6,03		[163b] Eq. C9.A12.5-16
Facteur d'imperfection alpha_x	$alpha_x =$	0,44		[163b] Eq. C9.A12.5-17
Elancement limite lambda_cc0x	lambda_cc0x =	0,20		[163b] Eq. C9.A12.5-18
Facteur dom.plast. beta_x	beta_x =	0,60		[163b] Eq. C9.A12.5-19
Exposant d'interaction neta_x	$neta_x =$	1,00		[163b] Eq. C9.A12.5-20
Elancement réduit lambda_ccx	lambda_cex =	0,31		[163b] Eq. C9.A12.5-21
Elancement limite lambda_ccpx	neta_x =	1.05		[163b] Eq. C9.A12.5-22
Coeff, de réduction khi_x	$\mathbf{khi}_{\underline{}}\mathbf{x}=$	0,92	Flt. élasto-plastique	[163b] Eq. C9.A12.5-23+
Contrainte critique	sigma_xRk =	318,68	MPa	[163b] Eq. C9.A12.5-26
Force F_cmax	F_emax =	1,86E+07	N	[163b] Eq. C9.A12.5-27
Moment M_max	M_max =	4,81E+09	N.mm	[163b] Eq. C9.A12.5-28
Coefficient d'interaction	k_x =	1,94		[163b] Eq. C9.A128.3-1

GUIDE SEISME - EQUIPEMENTS CHAUDRONNES Annexe 3 : Contraintes critiques de voilement Têtes des poteaux

Page 11 08/03/15

Sphère [172]

Contrainte critique de voilement par cisaillement

$$\frac{R}{e_u} \le 0.16 \left(\frac{E}{R_{pt}}\right)^{\frac{2}{3}}$$
 28,72 > 11,49 [163b] Eq. C9.A12.7-1

La vérification du voilement sous l'effet du cisaillement est nécessaire

Paramètre omega_tau	omega_tau =	92,31		[163b] Eq. C9.A12.7-4
Coefficient C_tau	C_tau =	1		[163b] C9.A12.7-5+
Contrainte théorique de voilement	Tau_xtetaRcr =	570,75	MPa	[163b] C9.A12.7_8
Facteur alpha_tau (Tolérances)	alpha_tau =	0,50		[163b] § C9.A12.7 e)
Elancement limite lambda_cc0tau	lambda_cc0tau =	0,40		[163b] Eq. C9.A12.6-19
Facteur dom.plast. beta_tau	beta_tau =	0,60		[163b] Eq. C9.A12.6-20
Exposant d'interaction neta_tau	neta_tau =	1,00		[163b] Eq. C9.A12.6-21
Elancement réduit lambda_cctau	lambda_cctau =	0,59		[163b] Eq. C9.A12.7-15
Elancement limite lambda_ccptau	lambda_ceptau =	1,12		[163b] Eq. C9.A12.7-16
Coeff, de réduction khi_tau	khi_tau =	0.84	Flt. élasto-plastique	[163b] Eq. C9.A12.7-17+
Contrainte critique	tau_xtetaRk =	145,00	MPa	[163b] Eq. C9.A12.7-20
Effort tranchant Q_max	Q_max =	4,24E+06	N	
Coefficient d'interaction	k_tau =	1,88		[163b] Eq. C9.A128.3-3
Coefficient d'interaction	k_i =	0,02		[163b] Eq. C9.A12-8.3-4

GUIDE SEISME - EQUIPEMENTS CHAUDRONNES Annexe 4 : Contraintes critiques de voilement Fûts des poteaux

Page 12 08/03/15

Sphere [172]

	111		
Situation			
Pression d'étude	P étude -	0,00	MPa
Température d'étude	T_étude =	20,00	°C
Matériau		P355GH	
Limite d'élasticité	Rp_poteaux =	345,00	MPa
Module d'élasticité	E_poteaux =	210 000,00	MPa
Coefficient de Poisson	nu =	0,30	
Caractéristiques géométriques du composant		Cylindre	
Diamètre nominal (intérieur)	dp_int =	998,00	mm
Epaisseur	ep =	18,00	mm
Longueur	lc -	10 607,08	mm
Rayon moyen	$rm_i =$	517,00	mm
Conditions aux limites du composant		Direction radiale	Direction méridienne
Extrémité 1		Encastré	Encastré
Extrémité 2		Encastre	Encastré
Imperfections de fabrication			
Référentiel de construction		CODAP 199	5
Diamètre maximum mesuré		1008	mm
Diamètre minimum mesuré		990	mm
Ovalisation		0.02	
Classe de tolérance relative à l'ovalisation		C	
Ecarts de forme			
Dir. longitudinale hors zones soudées		88	mm
Dir. longitudinale zones soudées			mm
Dir. circonférentielle hors zones soudés		6	mm
Dir. circonferentielle zones soudées		-	mm
Distance entre deux soudures circulaires		1000	mm
Distance entre deux soudures longitudinales		1000	mm
Classe de tolérance relative aux écarts de forme		C	
Ecart d'alignement des fibres moyennes		2,80	mm
Ecart d'alignement des fibres moyennes / ep		0,16	
Classe de tolérance relative aux écarts d'alignement		В	
Classe de tolérance globale		C	

GUIDE SEISME - EQUIPEMENTS CHAUDRONNES Annexe 4 : Contraintes critiques de voilement Fûts des poteaux

Page 13 08/03/15

Sphère [172]

Contrainte critique de voilement longitudinale

$$\frac{R}{e_{u}} \le 0.03 \frac{E}{R_{pt}}$$
 28.72 > 18.26 [163b] Eq. C9.A12.5-1

La vérification du voilement sous l'effet des contraintres de compresion longitudinales est nécessaire

Paramètre omega_x	omega_x =	109,95		[163b] Eq. C9.A12.5-5
Coefficient C_xb	C_xb =	6		[163b] Tab. C9.A12.5
Coefficient C_x	$\mathbf{C}_{\mathbf{x}} =$	0.78		[163b] § C9.A12.5 c)
Cont. théorique de voilement	sigma_xRer =	3441,934496	MPa	[163b] Eq. C9.A12.5-12
Paramètre Q (Tolérances)	Q =	16,00		[163b] § C9.A12.5 e)
Ampl. d'imperfection delta_wk	$delta_wk =$	6,03		[163b] Eq. C9.A12.5-16
Facteur d'imperfection alpha_x	alpha_x =	0,44		[163b] Eq. C9.A12.5-17
Elancement limite lambda_cc0x	lambda_cc0x =	0,20		[163b] Eq. C9.A12.5-18
Facteur dom.plast. beta_x	$beta_x =$	0,60		[163b] Eq. C9.A12.5-19
Exposant d'interaction neta_x	neta_x =	1,00		[163b] Eq. C9.A12.5-20
Elancement réduit lambda_ccx	lambda_cex =	0,32		[163b] Eq. C9.A12.5-21
Elancement limite lambda_ccpx	neta_x =	1,05		[163b] Eq. C9.A12.5-22
Coeff. de réduction klu_x	$khi_x =$	0,92	Flt. élasto-plastique	[163b] Eq. C9.A12.5-23+
Contrainte critique	$sigma_xRk =$	316,74	MPa	[163b] Eq. C9.A12.5-26
Force F_cmax	F_cmax =	1,85E+07	N	[163b] Eq. C9.A12.5-27
Moment M_max	M_max =	4,78E+09	N.mm	[163b] Eq. C9.A12.5-28
Coefficient d'interaction	k_x=	1,94		[163b] Eq. C9.A128.3-1

GUIDE SEISME - EQUIPEMENTS CHAUDRONNES Annexe 4 : Contraintes critiques de voilement Fûts des poteaux

Page 14 08/03/15

Sphère [172]

Contrainte critique de voilement par cisaillement

$$\frac{R}{e_{\rm w}} \le 0.16 \left(\frac{E}{R_{\rm pt}}\right)^{\frac{4}{3}}$$
 28,72 > 11,49 [163b] Eq. C9.A12.7-1

La vérification du voilement sous l'effet du cisaillement est nécessaire

Paramètre omega_tau	omega_tau =	109,95		[163b] Eq. C9.A12.7-4
Coefficient C_tau	C_tau =	1		[163b] C9.A12.7-5+
Contrainte théorique de voilement	Tau_xtetaRcr =	522,94	MPa	[163b] C9.A12.7_8
Facteur alpha_tau (Tolérances)	alpha_tau =	0,50		[163b] § C9.A12.7 e)
Elancement limite lambda_cc0tau	lambda_cc0tau =	0,40		[163b] Eq. C9.A12.6-19
Facteur dom.plast, beta_tau	beta_tau -	0,60		[163b] Eq. C9.A12.6-20
Exposant d'interaction neta_tau	neta_tau =	1,00		[163b] Eq. C9.A12.6-21
Elancement réduit lambda_cctau	lambda_cctau =	0,62		[163b] Eq. C9.A12.7-15
Elancement limite lambda_ccptau	lambda_ceptau =	1,12		[163b] Eq. C9.A12.7-16
Coeff. de réduction khi_tau	khi_tau =	0,82	Flt. élasto-plastique	[163b] Eq. C9.A12.7-17+
Contrainte critique	tau_xtetaRk =	141,20	MPa	[163b] Eq. C9.A12.7-20
Effort tranchant Q_max	Q_max =	4,13E+06	N	
Coefficient d'interaction	$k_tau =$	1,86		[163b] Eq. C9.A128.3-3
Coefficient d'interaction	k i=	0,01		[163b] Eq. C9.A12-8.3-4

DT 114 - Guide Équipements chaudronnés & machines tournantes destinés aux procédés industriels

ANNEXE 6 MACHINES TOURNANTES 1° PARTIE EQUIPEMENT SUR SUPPORT MUNI D'ISOLATEURS

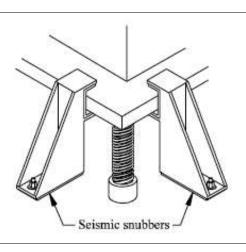
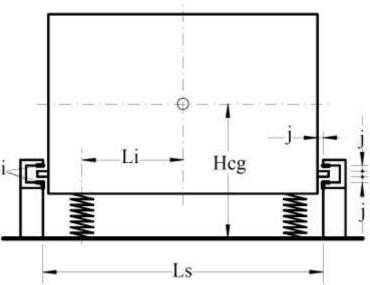



Figure A6-1

-1

Evaluation des efforts sur les butées [175]

j=jeu suffisant pour que les isolateurs fonctionnent correctement en service normal

i = éventuellement matériau élastique (néoprène...)

Il est nécessaire de disposer deux supports/butés sur chacun des quatre côtés du châssis ou de l'embase de l'équipement

Cette procédure est applicable si 0,45 Ls \leq Li \leq 0,55 Ls

Hcg	=	Hauteur du centre de gravité de l'équipement		
Li	=	Voir Figure		
Ls	=	Voir Figure		
Meq	=	Masse totale de l'équipement		
AccH		Accélération horizontale à période nulle pour la direction de séisme considérée		
Cji	=	1	Supports pourvus de butées élastiques et dont le jeu, j, dans la direction de séisme considérée est inférieur ou égal à 6 mm	
	=	1,5	Supports non pourvus de butées élastiques (contact métal-métal) et dont le jeu, j, dans la direction de séisme considérée est inférieur ou égal à 6 mm	
	=	2	Supports pourvus de butées élastiques et dont le jeu, j, dans la direction de séisme considérée est supérieur à 6 mm	
	=	3	Supports non pourvus de butées élastiques (contact métal-métal) et dont le jeu, j, dans la direction de séisme considérée est supérieur à 6 mm	

Force horizontale sur chaque support actif dans la direction de séisme considérée									
$FH = \frac{Meq\ AccH}{NH}\ Cji$	où NH est le nombre de supports actifs pour la direction de séisme horizontale considérée	A6/1-1							

Force verticale sur chaque support actif		
$FVc \ ou \ FVt = \pm 1,3 \ \frac{Meq \ AccH}{NV \ Ls} \ Cji$	où NV est le nombre de supports actifs pour la direction verticale	A6/1-2

Figure A6-2

DT 114 - Guide Équipements chaudronnés & machines tournantes destinés aux procédés industriels